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Wasserstein Distances and the Curse of Dimensionality

Wasserstein Distances and the Curse of Dimensionality

Definition of the Wasserstein Distance (earth mover’s distance, optimal cost): for
any measure P,Q,

Dc(P,Q) = min
π∈P(Ω×Ω)

{(∫
c(x ,w)π (dx ,dw)

)
:

∫
w∈Rd

π (dx ,dw) = P (dx) ,

∫
x∈Rd

π (dx ,dw) = Q (dw)

}
.

Curse of the dimensionality: Dc(P∗,Pn) = Op

(
n−1/(d∨2)

)
.

How to explain the good empirical performance, e.g.., Wasserstein GAN?
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Robust Wasserstein Profile Function

Robust Wasserstein Profile Function

Rn = inf
P∈P(Ω)

{Dc (P,Pn) : EP [f (X )] = EP∗ [f (X )] , for all f ∈ B (Ω)}.
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Duality Results

Duality Results

Theorem (Strong Duality)

Suppose the underlying space Ω is compact and the cost function c(·, ·) is a
non-negative continuous function with c(x , x) = 0, for x ∈ Ω. Then, we have the
strong duality

Rn := inf
P∈P(Ω)

{Dc (P,Pn) : EP [f (X )] = EPn [f (X )] , for all f ∈ B (Ω)}.

= sup
f∈LB(Ω)

{EP∗ [f (X )]− EPn [f c(X )]} ,

where f c(x) = supz∈Ω {f (z)− c(z , x)} and LB(Ω) denotes the linear span
generated by B(Ω), namely

LB(Ω) =

{
f (·) =

m∑
i=1

λi fi (·) : {fi (·)}mi=1 ⊂ B(Ω), λ ∈ Rm, and m ∈ Z+

}
.
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Duality Results Connections with the the Integral Probability Metric (IPM)

Connections with the the Integral Probability Metric (IPM)

IPMF (P,Pn) = sup
f∈F

∣∣∣∣∫ f dP −
∫

f dPn

∣∣∣∣ .

Rn is not a metric in general.

We add a new modeling feature, which is the hypothesis class.

Our expression for the strong duality uses the combination of both the
function f and its c-conjugate f c in contrast with IPM.

niansi@stanford.edu (Stanford) Wasserstein Projection October 22, 2020 6 / 10



Duality Results Connections with the the Integral Probability Metric (IPM)

Connections with the the Integral Probability Metric (IPM)

IPMF (P,Pn) = sup
f∈F

∣∣∣∣∫ f dP −
∫

f dPn

∣∣∣∣ .
Rn is not a metric in general.

We add a new modeling feature, which is the hypothesis class.

Our expression for the strong duality uses the combination of both the
function f and its c-conjugate f c in contrast with IPM.

niansi@stanford.edu (Stanford) Wasserstein Projection October 22, 2020 6 / 10



Duality Results Connections with the the Integral Probability Metric (IPM)

Connections with the the Integral Probability Metric (IPM)

IPMF (P,Pn) = sup
f∈F

∣∣∣∣∫ f dP −
∫

f dPn

∣∣∣∣ .
Rn is not a metric in general.

We add a new modeling feature, which is the hypothesis class.

Our expression for the strong duality uses the combination of both the
function f and its c-conjugate f c in contrast with IPM.

niansi@stanford.edu (Stanford) Wasserstein Projection October 22, 2020 6 / 10



Duality Results Connections with the the Integral Probability Metric (IPM)

Connections with the the Integral Probability Metric (IPM)

IPMF (P,Pn) = sup
f∈F

∣∣∣∣∫ f dP −
∫

f dPn

∣∣∣∣ .
Rn is not a metric in general.

We add a new modeling feature, which is the hypothesis class.

Our expression for the strong duality uses the combination of both the
function f and its c-conjugate f c in contrast with IPM.

niansi@stanford.edu (Stanford) Wasserstein Projection October 22, 2020 6 / 10



Duality Results Examples

Examples

1. When B (Ω) is the space of all 1-Lipschitz functions, f c(x) = f (x) and Rn

reduces to 1−Wasserstein distance. Then, we recover the
Kantorovich-Rubinstein duality result:

Rn = sup
f∈Lip1(Ω)

{EP∗ [f (X )]− EPn [f (X )]} = D1 (P∗,Pn) .

2. Suppose that B(Ω) is finite dimensional, such as B(Ω)= {fi (x)}Ki=1. Then,
we have

Rn = sup
λ∈RK

{
EP∗

[
K∑
i=1

λi fi (X )

]
− EPn

[
sup
z∈Ω

{
K∑
i=1

λi fi (z)− c(z ,X )

}]}
,

which recovers the duality result obtained in Blanchet et al. (2019).
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Duality Results Examples

Examples

3. Infinite dimensional case: fix linearly independent unit vectors
θ1, . . . , θK ∈ Rd , and consider function class
B(Ω) = ∪Ki=1

{
f (θ>i ·)|Ω : f ∈ FB

}
, where FB collects some 1-dimensional

continuous functions, in which case

LB(Ω) =

{
f (·) =

K∑
i=1

λi fi (θ
>
i ·)|Ω : {fi (·)}Ki=1 ⊂ FB, λ ∈ RK

}
.

Theorem

Following the setting in Example 3 and for Ω = Rd , we have the strong duality:

Rn = sup
f∈LB(Rd )

{EP∗ [f (X )]− EPn [f c (X )]} .
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Statistical convergence

Statistical convergence

Theorem

Consider function class B(Ω) = ∪Ki=1

{
f (θ>i ·)|Ω : f ∈ FB

}
in Example 3. We

assume the space Ω is compact and some technical conditions on the function
class FB, we have

nRn ⇒ sup
f∈LB(Ω)

{
−2H f − EP∗

[
‖∇X f (X )‖2

2

]}
,

where ∇x f (x) is the gradient of f (·) evaluated at x and H f is a Gaussian process
indexed by f with

H f ∼ N (0, var (f (X ))) and cov(H f1 ,H f2 ) = cov (f1(X ), f2(X )) .
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