Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality

Nian Si

Joint work with Jose Blanchet, Soumyadip Ghosh, and Mark Squillante

NeurIPS 2020

October 22, 2020

[Wasserstein Distances and the Curse of Dimensionality](#page-2-0)

2 [Robust Wasserstein Profile Function](#page-4-0)

[Duality Results](#page-5-0)

- [Connections with the the Integral Probability Metric \(IPM\)](#page-7-0)
- **•** [Examples](#page-11-0)

4 [Statistical convergence](#page-15-0)

Wasserstein Distances and the Curse of Dimensionality

Definition of the Wasserstein Distance (earth mover's distance, optimal cost): for any measure P, Q ,

$$
\mathcal{D}_{c}(P,Q) = \min_{\pi \in \mathcal{P}(\Omega \times \Omega)} \left\{ \left(\int c(x,w)\pi(dx, dw) \right) \right\} \n: \int_{w \in \mathbb{R}^{d}} \pi(dx, dw) = P(dx), \int_{x \in \mathbb{R}^{d}} \pi(dx, dw) = Q(dw) \right\}.
$$

Wasserstein Distances and the Curse of Dimensionality

Definition of the Wasserstein Distance (earth mover's distance, optimal cost): for any measure P, Q ,

$$
\mathcal{D}_{c}(P,Q) = \min_{\pi \in \mathcal{P}(\Omega \times \Omega)} \left\{ \left(\int c(x,w)\pi(dx, dw) \right) \right\} \n: \int_{w \in \mathbb{R}^{d}} \pi(dx, dw) = P(dx), \int_{x \in \mathbb{R}^{d}} \pi(dx, dw) = Q(dw) \right\}.
$$

Curse of the dimensionality: $\mathcal{D}_c(P_*, P_n) = O_p\left(n^{-1/(d \vee 2)}\right)$.

• How to explain the good empirical performance, e.g.., Wasserstein GAN?

Robust Wasserstein Profile Function

$$
R_n = \inf_{P \in \mathcal{P}(\Omega)} \{ \mathcal{D}_c \left(P, P_n \right) : \mathbb{E}_P \left[f \left(X \right) \right] = \mathbb{E}_{P_*} \left[f \left(X \right) \right], \text{ for all } f \in \mathcal{B} \left(\Omega \right) \}.
$$

Duality Results

Theorem (Strong Duality)

Suppose the underlying space Ω is compact and the cost function $c(\cdot, \cdot)$ is a non-negative continuous function with $c(x, x) = 0$, for $x \in \Omega$. Then, we have the strong duality

$$
R_n := \inf_{P \in \mathcal{P}(\Omega)} \{ \mathcal{D}_c \left(P, P_n \right) : \mathbb{E}_P \left[f \left(X \right) \right] = \mathbb{E}_{P_n} \left[f \left(X \right) \right], \text{ for all } f \in \mathcal{B}(\Omega) \}.
$$

=
$$
\sup_{f \in \mathcal{L} \mathcal{B}(\Omega)} \{ \mathbb{E}_{P_*} \left[f(X) \right] - \mathbb{E}_{P_n} \left[f^c(X) \right] \},
$$

where $f^c(x) = \sup_{z \in \Omega} \{ f(z) - c(z, x) \}$ and $\mathcal{LB}(\Omega)$ denotes the linear span generated by $\mathcal{B}(\Omega)$, namely

$$
\mathcal{LB}(\Omega)=\left\{f(\cdot)=\sum_{i=1}^m\lambda_if_i(\cdot):\{f_i(\cdot)\}_{i=1}^m\subset\mathcal{B}(\Omega),\lambda\in\mathbb{R}^m,\text{ and }m\in\mathbb{Z}_+\right\}
$$

.

Duality Results

Theorem (Strong Duality)

Suppose the underlying space Ω is compact and the cost function $c(\cdot, \cdot)$ is a non-negative continuous function with $c(x, x) = 0$, for $x \in \Omega$. Then, we have the strong duality

$$
R_n := \inf_{P \in \mathcal{P}(\Omega)} \{ \mathcal{D}_c \left(P, P_n \right) : \mathbb{E}_P \left[f \left(X \right) \right] = \mathbb{E}_{P_n} \left[f \left(X \right) \right], \text{ for all } f \in \mathcal{B}(\Omega) \}.
$$

=
$$
\sup_{f \in \mathcal{L} \mathcal{B}(\Omega)} \{ \mathbb{E}_{P_*} \left[f(X) \right] - \mathbb{E}_{P_n} \left[f^c(X) \right] \},
$$

where $f^c(x) = \sup_{z \in \Omega} \{ f(z) - c(z, x) \}$ and $\mathcal{LB}(\Omega)$ denotes the linear span generated by $\mathcal{B}(\Omega)$, namely

$$
\mathcal{LB}(\Omega)=\left\{f(\cdot)=\sum_{i=1}^m\lambda_if_i(\cdot):\{f_i(\cdot)\}_{i=1}^m\subset\mathcal{B}(\Omega),\lambda\in\mathbb{R}^m,\text{ and }m\in\mathbb{Z}_+\right\}
$$

.

$$
\text{IPM}_{\mathcal{F}}(P, P_n) = \sup_{f \in \mathcal{F}} \left| \int f \, \mathrm{d}P - \int f \, \mathrm{d}P_n \right|.
$$

$$
\text{IPM}_{\mathcal{F}}(P, P_n) = \sup_{f \in \mathcal{F}} \left| \int f \, \mathrm{d}P - \int f \, \mathrm{d}P_n \right|.
$$

 \bullet R_n is not a metric in general.

$$
\text{IPM}_{\mathcal{F}}(P, P_n) = \sup_{f \in \mathcal{F}} \left| \int f \, \mathrm{d}P - \int f \, \mathrm{d}P_n \right|.
$$

- \bullet R_n is not a metric in general.
- • We add a new modeling feature, which is the hypothesis class.

$$
\text{IPM}_{\mathcal{F}}(P, P_n) = \sup_{f \in \mathcal{F}} \left| \int f \, \mathrm{d}P - \int f \, \mathrm{d}P_n \right|.
$$

- \bullet R_n is not a metric in general.
- We add a new modeling feature, which is the hypothesis class.
- Our expression for the strong duality uses the combination of both the function f and its c -conjugate f^c in contrast with IPM.

1. When $\mathcal{B}(\Omega)$ is the space of all 1-Lipschitz functions, $f^c(x) = f(x)$ and R_n reduces to 1−Wasserstein distance. Then, we recover the Kantorovich-Rubinstein duality result:

$$
R_n = \sup_{f \in \text{Lip}_1(\Omega)} \left\{ \mathbb{E}_{P_*} \left[f(X) \right] - \mathbb{E}_{P_n} \left[f(X) \right] \right\} = \mathcal{D}_1 \left(P_*, P_n \right).
$$

1. When $\mathcal{B}(\Omega)$ is the space of all 1-Lipschitz functions, $f^c(x) = f(x)$ and R_n reduces to 1−Wasserstein distance. Then, we recover the Kantorovich-Rubinstein duality result:

$$
R_n = \sup_{f \in \text{Lip}_1(\Omega)} \left\{ \mathbb{E}_{P_*} \left[f(X) \right] - \mathbb{E}_{P_n} \left[f(X) \right] \right\} = \mathcal{D}_1 \left(P_*, P_n \right).
$$

2. Suppose that $\mathcal{B}(\Omega)$ is finite dimensional, such as $\mathcal{B}(\Omega) = \{f_i(x)\}_{i=1}^K$. Then, we have

$$
R_n = \sup_{\lambda \in \mathbb{R}^K} \left\{ \mathbb{E}_{P_*} \left[\sum_{i=1}^K \lambda_i f_i(X) \right] - \mathbb{E}_{P_n} \left[\sup_{z \in \Omega} \left\{ \sum_{i=1}^K \lambda_i f_i(z) - c(z,X) \right\} \right] \right\},
$$

which recovers the duality result obtained in Blanchet et al. (2019).

3. Infinite dimensional case: fix linearly independent unit vectors $\theta_1,\ldots,\theta_K\in\mathbb{R}^d,$ and consider function class $\mathcal{B}(\Omega)=\cup_{i=1}^K\left\{f(\theta_i^\top\cdot)|_{\Omega}:f\in\mathcal{F}_\mathcal{B}\right\},$ where $\mathcal{F}_\mathcal{B}$ collects some 1-dimensional continuous functions, in which case

$$
\mathcal{LB}(\Omega)=\left\{f(\cdot)=\sum_{i=1}^K\lambda_if_i(\theta_i^\top\cdot)|_{\Omega}:\{f_i(\cdot)\}_{i=1}^K\subset\mathcal{F}_{\mathcal{B}},\lambda\in\mathbb{R}^K\right\}.
$$

3. Infinite dimensional case: fix linearly independent unit vectors $\theta_1,\ldots,\theta_K\in\mathbb{R}^d,$ and consider function class $\mathcal{B}(\Omega)=\cup_{i=1}^K\left\{f(\theta_i^\top\cdot)|_{\Omega}:f\in\mathcal{F}_\mathcal{B}\right\},$ where $\mathcal{F}_\mathcal{B}$ collects some 1-dimensional continuous functions, in which case

$$
\mathcal{LB}(\Omega)=\left\{f(\cdot)=\sum_{i=1}^K\lambda_if_i(\theta_i^\top\cdot)|_{\Omega}:\{f_i(\cdot)\}_{i=1}^K\subset\mathcal{F}_{\mathcal{B}},\lambda\in\mathbb{R}^K\right\}.
$$

Theorem

Following the setting in Example 3 and for $\Omega = \mathbb{R}^d$, we have the strong duality:

$$
R_n = \sup_{f \in \mathcal{L}\mathcal{B}(\mathbb{R}^d)} \left\{ \mathbb{E}_{P_*} \left[f(X) \right] - \mathbb{E}_{P_n} \left[f^c \left(X \right) \right] \right\}.
$$

Statistical convergence

Theorem

Consider function class $\mathcal{B}(\Omega) = \bigcup_{i=1}^K \big\{ f(\theta_i^\top \cdot) \big|_{\Omega} : f \in \mathcal{F}_{\mathcal{B}} \big\}$ in Example 3. We assume the space Ω is compact and some technical conditions on the function class \mathcal{F}_B , we have

$$
nR_n \Rightarrow \sup_{f \in \mathcal{L}B(\Omega)} \left\{-2H^f - \mathbb{E}_{P_*}\left[\|\nabla_X f(X)\|_2^2\right]\right\},\,
$$

where $\nabla_{\mathsf{x}} f(\mathsf{x})$ is the gradient of $f(\cdot)$ evaluated at x and H^f is a Gaussian process indexed by f with

$$
H^f \sim \mathcal{N}(0, \text{var}(f(X))) \text{ and } \text{cov}(H^{f_1}, H^{f_2}) = \text{cov}(f_1(X), f_2(X)).
$$

Reference

Si, Nian, Jose Blanchet, Soumyadip Ghosh, and Mark Squillante. "Quantifying the Empirical Wasserstein Distance to a Set of Measures: Beating the Curse of Dimensionality" NeurIPS 2020

Thanks!