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Model Setup and Assumptions Reflected Brownian Motion

Reflected Brownian Motion (RBM)

RBM is the solution of a Skorokhod problem with Brownian input.

Skorokhod problem:

0 ≤ Y (t) = Y (0) + X (t) + RL (t) , L(0) = 0 (1)

where the i-th entry of L (·) is non-decreasing and∫ t
0 Yi (s) dLi (s) = 0.

Multi-dimensional Brownian motion X → RBM Y.

Goal: Find an efficient simulation algorithm to estimate the
steady-state expectation of certain functions f (·) of a general
multi-dimension RBM for arbitrary dimension d .
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Model Setup and Assumptions A Digression: a Naive Euler Scheme

A naive Euler scheme

...
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d
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bias: O(h);

standard deviation: O(N−1/2);

Non-stationary error: |f (YT )− f (Y∞)|.
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Model Setup and Assumptions A Digression: a Naive Euler Scheme

A naive Euler scheme: error analysis

...

...

......

d

d

N

h

T

For a stepsize h, the number of independent sample path N, and
horizon T :

Ŷ(t + h) = Skorokhod(Ŷ(t) + ∆X(t));

RMSE ≈ O(
√

1/N + h2).

To make the RMSE O(ϵ), it requires N = O(ϵ−2) and h = O(ϵ). The
computational complexity is O(ϵ−3Td).

What is the dependence of T on d and ϵ? And can we do better in
terms of ϵ?
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RMSE ≈ O(
√

1/N + h2).

To make the RMSE O(ϵ), it requires N = O(ϵ−2) and h = O(ϵ). The
computational complexity is O(ϵ−3Td).

What is the dependence of T on d and ϵ? And can we do better in
terms of ϵ?

niansi@chicagobooth.edu (ChicagoBooth) Simulation for RBM May 18, 2023 5 / 25



Multilevel Monte Carlo Algorithm

Multilevel Monte Carlo Algorithm
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Multilevel Monte Carlo Algorithm Assumptions

Assumptions

Uniform contraction: let R = I −QT , where Q is substochastic and
satisfies∥∥∥1TQn

∥∥∥
∞

≤ κ0(1− β0)
n, n ≥ 1.

for β0 ∈ (0, 1) and κ0 ∈ (0,∞) independent of d .

✗ A counter example:

µ00

µ11

µkk

µKK

λ1

λK

λk

...

...

λ0

Q =


0 0 0

1
. . .

...
. . .

1 0 0
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Multilevel Monte Carlo Algorithm Assumptions

Assumptions: continue

Uniform stability: let X (t) = µt + CB (t) and assume
R−1µ < −δ01 for δ0 > 0 independent of d .

Uniform marginal variability: let Σ = CCT be the variance of the
driven Brownian motion and assume b−1

0 ≤ Σi ,i ≤ b0 for b0 > 0
independent of d .

Lipschitz functions: The function to be estimated f (·) is Lipschitz
continuous in l∞ norm, i.e. |f (y)− f (y′)| ≤ L∥y − y′∥∞ for L > 0
independent of d .

✔ f (y) = 1
d

∑d
i=1 yi ;

✔ f (y) = yi ;
✔ f (y) = ∥y∥∞;

✗ f (y) =
∑d

i=1 yi .
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Multilevel Monte Carlo Algorithm Algorithm Specification

Multilevel Monte Carlo algorithm: discretization

Parameters: discretization granularity γ ∈ (0, 1); simulation horizon
T > 0; the total number of levels L.

Linear discretization in level m ≥ 0: denote Dm = {0, γm, 2γm, ...},
let t+m = inf{r ∈ Dm : r > t} and t−m = sup{r ∈ Dm : r ≤ t};

Bm
i (t) = Bi

(
t−m

)
+
(
t − t−m

) Bi (t
+
m)− Bi (t

−
m)

t+m − t−m
, for i = 1, 2, ..., d .

Xm (t) = µt + CBm (t).

RBMs driven by Xs:t (Xm
s:t) for Xs:t(u) = X (s + u)− X(s):

Y (t + s; y,X0:s+t) = Y (t;Y (s; y,X0:s) ,Xs:s+t) ,

Ym
(
t + s; y,Xm

0:s+t

)
= Ym

(
t;Ym (s; y,Xm

0:s) ,X
m
s:s+t

)
.

(2)
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Multilevel Monte Carlo Algorithm Algorithm Specification

Multilevel Monte Carlo algorithm: estimator

Our estimator:

Z =
1

p(M)

(
f
(
YM+1

(
MT ;YM+1

(
T ; y0,X

M+1
0:T

)
,XM+1

T :(M+1)T

))
−f

(
YM

(
MT ; y0,X

M
T :(M+1)T

)))
+ f (y0) .

for a random variable M following probability distribution

P(M = m) = p (m) = γm (1− γ) /(1−γL) ≜ K (γ)γm, for 0 ≤ m < L.

γM+1

γM

MT

T MT

YM

YM+1
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Multilevel Monte Carlo Algorithm Algorithm Specification

Multilevel Monte Carlo algorithm: estimator

E [Z ] = E [E [Z |M]]

=
L−1∑
m=0

(
E
[
f
(
Ym+1

(
mT ;Ym+1(T ; y0,X

m+1
0:T ),Xm+1

T :(m+1)T

))]
−E

[
f
(
Ym

(
mT ; y0,X

m
T :(m+1)T

))])
+ f (y0)

=
L−1∑
m=0

(
E
[
f
(
Ym+1

(
(m + 1)T ; y0,X

m+1
0:(m+1)T

))]
− E [f (Ym (mT ; y0,X

m
0:mT ))]) + f (y0)

= E
[
f
(
YL

(
TL; y0,X

L
0:LT

))]
.

As L → ∞,

E
[
f
(
YL

(
TL; y0,X

L
0:LT

))]
→ E [f (Y(∞))].
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Multilevel Monte Carlo Algorithm Error Bound

Multilevel Monte Carlo Algorithm: Error Analysis
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Multilevel Monte Carlo Algorithm Error Bound

Key gradients to error analysis: discretization error

Lemma (Discretization Error)

For 0 < γ < 1 and m ≥ 1, let Xm(·) be a discretized d-dimension
Brownian path with step size γm. Then, we have for any d ≥ 2,m ≥ 1,
t > γ,

E

[
max
1≤i≤d

max
0≤s≤t

(Xm
i (s)− Xi (s))

2

]
≤ C0γ

m(log(t)+log(d)+m log(1/γ)).

Lemma (Lipschitzness)

Suppose Y(t) and Y′(t) ∈ Rd
+ are the solutions to two Skorokhod

problems with the same reflection matrix R, and input processes X(t) and
X′(t) respectively for t ∈ [0,T ]. Then,∣∣Y(T )− Y′(T )

∣∣ ≤ 2R sup
0≤s≤T

|X(s)− X′(s)|.
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Multilevel Monte Carlo Algorithm Error Bound

Key gradients to error analysis: non-stationary error

Lemma (Non-stationary Error)

There exist constants C2 and ξ1 > 0 such that

E [∥Y(t;Y(∞),X0:t)− Y(t; 0,X0:t)∥2∞] ≤ C2d
3 exp

(
−ξ1

t

log(d)

)
.

Proof ideas: Directional derivative [Mandelbaum and Ramanan, 2010]:

Dh (t; y,X0:t) = lim
ε→0

Y (t; y+εh,X0:t)− Y (t; y,X0:t)

ε
,∀ h ∈ Rd .

After bounding Dh (t; y,X0:t) elementwise, we observe

Y (t; y,X0:t)− Y (t; 0,X0:t) =

(∫ 1

0
Dy (t; u · y,X0:t) du

)
.

The rest of proof are similar to Banerjee and Budhiraja [2019] and
Blanchet and Chen [2020].
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Multilevel Monte Carlo Algorithm Error Bound

Error analysis: decomposition

The MSE of the estimator Z̄ = 1
N

∑N
i=1 Zi is

E [(Z̄ − E [f (Y(∞))])2]

≤ 1

N

L−1∑
m=0

K (γ)−1γ−mVm

+
(
E
[
f
(
YL

(
TL; y0,X

L
0:LT

))]
− E [f (Y(∞))]

)2
,

where

Vm = E
[(

f
(
Ym+1

(
(m + 1)T ; y0,X

m+1
0:(m+1)T

))
−f

(
Ym

(
mT ; y0,X

m
T :(m+1)T

)))2
]
.
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Multilevel Monte Carlo Algorithm Error Bound

Error analysis: the variance term Vm

∥Ym+1
(
(m + 1)T ; y0,X

m+1
0:(m+1)T

)
− Ym

(
mT ; y0,X

m
T :(m+1)T

)
∥∞

≤ ∥Ym+1
(
(m + 1)T ; y0,X

m+1
0:(m+1)T

)
− Y

(
(m + 1)T ; y0,X0:(m+1)T

)
∥∞

+ ∥Ym
(
mT ; y0,X

m
T :(m+1)T

)
− Y

(
mT ; y0,XT :(m+1)T

)
∥∞

+ ∥Y
(
(m + 1)T ; y0,X0:(m+1)T

)
− Y

(
mT ; y0,XT :(m+1)T

)
∥∞

= Discretization Errors + Non-stationarity Error.
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Multilevel Monte Carlo Algorithm Error Bound

Error analysis: the bias term

E
[
f
(
YL

(
TL; y0,X

L
0:LT

))]
− E [f (Y(∞))]

=
(
E
[
f
(
YL

(
TL; y0,X

L
0:LT

))]
− E [f (Y (TL; y0,X0:LT ))]

)
+ (E [f (Y (TL; y0,X0:LT ))]− E [f (Y(∞))])

= Discretization Error + Non-stationarity Error.
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Multilevel Monte Carlo Algorithm Error Bound

Error bound

Parameter specification:

Step size: we recommend γ around 0.05;

Path length: T = O(log(d)2);

Number of levels: L = ⌈(log(log(d)) + 2 log(1/ε) + k1) / log(1/γ)⌉;
Number of sample paths:
N = ⌈(1− γL)(1− γ)−1γ−LL⌉ = O(ε−2 log(d) log(log(d))).

Theorem

Suppose Y (indexed by the number of dimensions d) is a sequence of
RBMs satisfying Assumptions 1-4. Then, the total expected cost, in terms
of the number of scalar Gaussian random variables, for the Multilevel
Monte Carlo Algorithm to produce an estimator of E [f (Y(∞))] with mean
square error (MSE) ε2 is

O
(
ε−2d log(d)3(log(log(d)) + log(1/ε))3

)
.
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Numerical Experiments

Numerical Results
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Numerical Experiments

Numerical experiments: setup

Symmetric RBMs: µ = −[1, 1, . . . , 1]T

Σ =


1 ρσ . . . ρσ
ρσ 1 . . . ρσ
... 1

...
ρσ . . . ρσ 1

 , R =


1 −r . . . −r
−r 1 . . . −r
... 1

...
−r . . . −r 1

 .

Pick ρσ = −1−β
d−1 and r = 1−β

d−1 , and f (Y (∞)) = Y1(∞).

Closed form solution:

E [Y1(∞)] =
1− (d − 2)r + (d − 1)rρσ

2(1 + r)
=

β

2
.

Pick β = 0.8 and E [Y1(∞)] = 0.4.
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(b) γ = 0.05
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(c) γ = 0.1

Figure 1: Simulation results for symmetric RBMs at target error level ϵ = 0.01.
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Figure 2: Mean square error of the estimators at target error level ϵ = 0.05 for
γ = 0.05. The shaded area represents 95% confidence band for the MSE.
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Thanks!
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Appendix: solve the Skorokhod problem

Algorithm 1 Algorithm for the Linear Complementarity Problem

Input:
The reflection matrix: R, and the initial vector: x;
Output:
The solution of the linear complementarity problem: y ≥ 0, where
y = x+ RL for L ≥ 0.

1: Set ϵ = 10−8;
2: y = x;
3: while Exists yi < −ϵ do
4: Compute the set B = {i : yi < ϵ};
5: Compute LB = −R−1

B,BxB ;
6: Compute y = x+ R:,B × LB ;
7: end while
8: return y.
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