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Motivation

Generative AIs are data intense, what if we do not have a lot of data?

• (1): Find auxilary data sources (transfer learning).

• (2): Fuse auxilary data sources that align with the target data.

Challenges

• (1): How to optimally combine/fuse models?

• (2): How to train to obtain optimal combination weights?
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Motivation

Generate new unknown distribution P ∗ with density function

where few samples are available.
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Some Knowledge

Suppose we have good generators for distributions P1 and P2
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Combining Knowledge
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Optimal Fusion

Given densities
µ1, µ2, . . . , µm,

the D-barycenter problem given weights λ = (λ1, . . . , λm) ∈ ∆m, where
∆m = {λ ∈ [0, 1]m :

∑m
i=1 λi = 1}. is to find

µλ = argmin
µ

m∑
i=1

λiD (µ, Pi) .
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Optimal Nonparametric Fusion

D can be either a metric or a divergence between two probability
measures µ and ν.

• Wasserstein distance: D(µ, ν) = Wp(µ, ν): theoretically desirable,
but hard to compute.

• KL divergence: D(µ, ν) = DKL(µ ∥ ν): computationally more
tractable.

For each i = 1, 2, . . . ,m,

DKL (µ ∥ µi) =


∫

log

(
dµ

dµi

)
dµ, if µ ≪ µi

∞, otherwise.

Direct computation shows that

µλ(x) ∝
m∏
i=1

µi(x)
λi .
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Approach: Training Optimal Fusion

Let µσ
n(x) =

∑n
i=1

1
nϕσ(x− xi) be the smoothed empirical density of data

under target distribution ν, constructed from limited amount of data. We
want to solve the optimization problem

min
λ∈∆m

F (λ) = min
λ∈∆m

DKL (µ
σ
n ∥ µλ) (1)

to find optimal weights directly.

Lemma

Suppose the target and reference distributions are all compactly supported
with absolutely continuous densities, then Problem 1 is convex in λ.
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Training and Inference Challenges

Given Lemma, Problem 1 is a convex problem on a compact set, so we
can use gradient-based iterative method to numerically solve it. The
gradient has the closed form

∂F

∂λi
(λ) = −Eν [hi(X)] +

∫
exp (

∑m
k=1 λkhk(y))hi(y)dy∫

exp (
∑m

k=1 λkhk(y)) dy
,

where hi = logµi for each i = 1, 2, . . . ,m and µi is assumed to be
estimated.
However, 1) the numerical integration to compute the gradients is difficult
in high dimensions; 2) it is also hard to generate samples from the
barycenter.
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Diffusion Model to Rescue

To deal with the computational challenge, we make use the structure of
diffusion model, a generative model establishing a stochastic transport
map between an empirically observed, yet unknown, target distribution
and a known prior.
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Diffusion Model to Rescue

• Forward process:

dX(t) = −aX(t)dt+ σdW (t), X(0) ∼ p0

• Backward process:

dX̃(t) =
(
aX̃(t) + σ2∇ log pT−t

(
X̃(t)

))
dt+ σdW (t), X̃(0) ∼ pT

• Score estimation via score matching:

min
θ

Et∼U [0,T ]

[
EX(t)∼pt

[
∥st,θ (X(t))−∇ log pt(X(t))∥22

]]
• Above loss function motivates the loss function in the fusion method.
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Diffusion Model to Rescue

Suppose µ1, . . . , µm are auxiliary distributions trained using diffusion score
matching. Thus we have the backward SDEs (with pretrained neural
networks), for i = 1, 2, . . . ,m,

dX̃i(t) =
(
aX̃i(t) + σ2siT−t,θ∗

(
X̃i(t)

))
dt+ σdWi(t), X̃i(0) ∼ piT .

For simplicity, choose σ = 1.

How to use this to help fusion?
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Diffusion KL Barycenter

Theorem (informal)

Suppose for each i = 1, 2, . . . ,m, the i-th SDE has the form

dXi(t) = ai (t,X(t)) dt+ dWi(t), Xi(0) ∼ µi.

We further assume, for each i = 1, 2, . . . ,m, µi has continuous density,
then process-level KL barycenter can be represented as the SDE

dX(t) = a (t,X(t)) dt+ dW (t), X(0) ∼ µ,

where a(t, x) =
∑k

i=1 λiai(t, x), µ is the distribution-level KL barycenter
of reference measures µ1, . . . , µm, and W is a standard Brownian motion.
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Diffusion KL Barycenter

For a fixed λ, simulating the (backward) barycenter process

dX̃(t) =

(
aX̃(t) + σ2

m∑
i=1

λis
i
T−t,θ∗

(
X̃(t)

))
dt+ σdW (t)

from Gaussian gives the λ-barycenter µλ ∼ X̃(T ).
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Diffusion KL Barycenter

Let pνt be the probability measure at time t for the forward process
starting from the target distribution. Given µ̂1, . . . , µ̂m coupled with the
processes X̃1, . . . , X̃m, we minimize over λ ∈ ∆m

Et∼U [0,T̃ ]

EX(t)∼pνt

∥∥∥∥∥
m∑
i=1

(
λis

i
t,θ∗ (X(t))

)
−∇ log pνt (X(t))

∥∥∥∥∥
2

2


with T̃ ≪ T and all pretrained neural networks frozen.

Remarks

Essentially, the features (structures) of auxiliaries are borrowed, making
the training linear from the KL barycenter perspective.

• When T̃ is too small, there is numerical instability. This corresponds
to difficulty of numerical integration without diffusion model.

• When T̃ is too large, the error is large.
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Performance Guarantees

Theorem (Informal)

Let n be the number of samples in the target distribution, and we denote
the output of the fusion algorithm as ν̂P and ν is the target distribution,
then with high probability

TV (ν, ν̂P ) ≲ TV (ν, µΛ∗)︸ ︷︷ ︸
quality of combined auxiliaries

+ O
(
n−1/4

)
︸ ︷︷ ︸
sampling errors

+
√
mO

(
T̃ 1/4

)
︸ ︷︷ ︸

approximation of time 0

+O

√√√√ m∑
i=1

Epi·

[∥∥∥si·,θ∗ −∇ log pi·

∥∥∥2
2

]
︸ ︷︷ ︸

quality of auxiliary score estimations

.
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Example 1: MNIST with changing frequencies

Setting: The support of all our datasets are hand-drawn 1x28x28 images
of 7’s and 9’s, but their frequencies vary. We previously trained auxiliary
U-Nets on four frequencies: (10%, 90%), (30%, 70%), (70%, 30%),
(90%, 10%). However, the target marginal distribution is (60%,40%).

Objective: minimize negative log-likelihood & match target diversity
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Results: MNIST with changing frequencies

B1 is the baseline where a U-Net is trained from scratch using only the
target data.
B2 is the baseline where we directly fine-tune an auxiliary U-Net with
frequencies {‘7’: 70%, ‘9’: 30%}.

Table 1: Digit frequencies estimated by a SOTA classifier.

Digit Target
26 28 210 212

B1 B2 Ours B1 B2 Ours B1 B2 Ours B1 B2 Ours

7 60% 47.9% 72.4% 55.6% 66.8% 65.5% 57.5% 65.5% 65.1% 56.6% 66.7% 65.5% 59.8%
9 40% 10.3% 23.2% 39.4% 23.8% 29.9% 38.0% 26.7% 30.6% 39.8% 27.9% 30.4% 36.7%

Others 0 41.8% 4.4% 5.0% 9.4% 4.6% 4.5% 7.8% 4.3% 3.6% 5.4% 4.1% 3.5%
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Example 2: Generating a New Facial Distribution

Task: Given two auxiliary generative models, each with a monotonic
human face representation, how to fuse them to generate face images that
organically blend features from both subgroups?

Baseline: A popular empirical method called Checkpoint Merging [Biggs
et al. 2024] creates a new generative model by weighted averaging
weights of the two neural networks parametrizing the two models.
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Auxilary data sources

Figure 1: Top: portraits sampled from the first auxiliary model. It was finetuned
on images of people identifying as White male. Bottom: portraits sampled from
the second auxiliary model. It was finetuned on images of people identifying as
Asian female.
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Sampling from a Low Probability Region

(a) KL barycenter: gender-neural,
smooth transitions

(b) Checkpoint merging: two clus-
ters

Figure 2: Comparision of Portraits sampled from the KL barycenter and
checking merging distributions of the two auxiliary models. λ = (0.5, 0.5).
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Conclusions

1. λ-KL-barycenter is useful if
• Target in ”KL convex hull” of auxiliaries.
• Auxiliaries are well-trained.

2. ScoreFusion mitigates curse of dimensionality.

3. Connection to checkpoint merging.
• ScoreFusion can generate samples from low probability region.

4. Compatibility with existing AI workflow
• A user can easily adapt the U-Net training pipeline in the popular

Diffusers library to ScoreFusion training with a few lines of code.
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Conclusions
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