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Motivation

Generative Als are data intense, what if we do not have a lot of data?
(1): Find auxilary data sources (transfer learning).

(2): Fuse auxilary data sources that align with the target data.

(1): How to optimally combine/fuse models?

(2): How to train to obtain optimal combination weights?
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Motivation

Generate new unknown distribution P* with density function
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where few samples are available.
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Some Knowledge

Suppose we have good generators for distributions P, and P,
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Combining Knowledge
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Optimal Fusion

Given densities
K1y 2y - oy Uimyy

the D-barycenter problem given weights A = (A1,..., Apn) € Ay, where
Ay ={A€[0,1]™: 37", \; =1}. is to find

m
U\ = arg mﬁnz XD (p, Py) .
i=1
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Optimal Nonparametric Fusion

D can be either a metric or a divergence between two probability
measures 1 and v.

Wasserstein distance: D(pu,v) = Wp(p,v): theoretically desirable,
but hard to compute.

KL divergence: D(u,v) = Dki(p || v): computationally more
tractable.

Foreachi=1,2,...,m,

dp .
log ( > du, if p << py
Dyr (p || ) = / dpi

0, otherwise.

Direct computation shows that
m
pa(e) o ] pal)™i.
i=1
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Approach: Training Optimal Fusion

Let pug () = Y1y L¢po(x — ;) be the smoothed empirical density of data
under target distribution v, constructed from limited amount of data. We
want to solve the optimization problem

F(\) = D 1
)‘Igin (A) = )\fgm KL (ptm || 12x) (1)

to find optimal weights directly.

Suppose the target and reference distributions are all compactly supported
with absolutely continuous densities, then Problem 1 is convex in .
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Training and Inference Challenges

Given Lemma, Problem 1 is a convex problem on a compact set, so we
can use gradient-based iterative method to numerically solve it. The
gradient has the closed form

OF 4 Jexp Q2 Ahi(y)) hi(y)dy
O\ )= ()] + Jexp (323l Aehe(y) dy

where h; = log u; for each ¢ =1,2,...,m and p; is assumed to be
estimated.

However, 1) the numerical integration to compute the gradients is difficult
in high dimensions; 2) it is also hard to generate samples from the
barycenter.
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Diffusion Model to Rescue

To deal with the computational challenge, we make use the structure of
diffusion model, a generative model establishing a stochastic transport
map between an empirically observed, yet unknown, target distribution
and a known prior.

Forward SDE (data — noise)
dx = f(x, t)dt + g(t)dw

?

- gcoriunctlon )
dx = [f(x,t) — g*()V logp; | dt + g(t)dw @

Reverse SDE (noise — data)

9*‘5
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Diffusion Model to Rescue

Forward process:
dX(t) = —aX(t)dt + odW (t), X (0) ~ po
Backward process:
dX (t) = <aX(t) + 0V log prs (X(t))) dt + odW (t), X (0) ~ pr
Score estimation via score matching:
min Evaiio.r) |Exi 1560 (X(8)) = Viegp(X (1) 3] |

Above loss function motivates the loss function in the fusion method.
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Diffusion Model to Rescue

Suppose 1, .. ., thm are auxiliary distributions trained using diffusion score
matching. Thus we have the backward SDEs (with pretrained neural
networks), for i = 1,2,...,m,

dX,(t) = (af(i(t) + 025, g (f(l-(t))) dt + odWi(t), X;(0) ~ pi.

For simplicity, choose o = 1.
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Diffusion Model to Rescue

Suppose 1, .. ., thm are auxiliary distributions trained using diffusion score
matching. Thus we have the backward SDEs (with pretrained neural
networks), for i = 1,2,...,m,

dX,(t) = (af(i(t) + 025, g (f(l-(t))) dt + odWi(t), X;(0) ~ pi.

For simplicity, choose o = 1.

How to use this to help fusion?
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Diffusion KL Barycenter

Suppose for each i = 1,2, ..., m, the i-th SDE has the form
dXZ(t) = a; (t, X(t)) dt + dWi(t), Xz<0) ~ ;.

We further assume, for each i = 1,2,...,m, u; has continuous density,
then process-level KL barycenter can be represented as the SDE

dX(t) = a(t, X (t)) dt + dW (), X (0) ~ p,

where a(t,z) = Zle Aiai(t,x), u is the distribution-level KL barycenter
of reference measures i1, ..., ltm, and W is a standard Brownian motion.
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Diffusion KL Barycenter

For a fixed A, simulating the (backward) barycenter process

dX (t) = (@Z@) + o zmj NSy e (X(@)) dt + odW (t)

from Gaussian gives the A-barycenter iy ~ X (T)).
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Diffusion KL Barycenter

Let p} be the probability measure at time ¢ for the forward process

starting from the target distribution. Given fiy, ..., fi;, coupled with the
processes X1, ..., X,,, we minimize over A € A,,
m 2
B | | Excypy Z (Aist - (X (1)) — Viogp} (X(t))
i=1 2

with T' < T and all pretrained neural networks frozen.

Essentially, the features (structures) of auxiliaries are borrowed, making
the training linear from the KL barycenter perspective.
When T is too small, there is numerical instability. This corresponds
to difficulty of numerical integration without diffusion model.

When T is too large, the error is large.
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Performance Guarantees

Let n be the number of samples in the target distribution, and we denote
the output of the fusion algorithm as Up and v is the target distribution,
then with high probability

TV(v,0p) S TV (v, ua~) +0 (n—1/4> + JmO <T1/4>
— —_—— N ,

G @ CeINE S sampling errors  approximation of time 0

)

m
+0 ZEP? [Hsia* — Vlogpt
i=1

quality of auxiliary score estimations
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Example 1: MNIST with changing frequencies

Setting: The support of all our datasets are hand-drawn 1x28x28 images
of 7's and 9's, but their frequencies vary. We previously trained auxiliary
U-Nets on four frequencies: (10%,90%), (30%, 70%), (70%, 30%),
(90%,10%). However, the target marginal distribution is (60%,40%).

O R

4 -
v

M0 YW
QLAVNAI Y

7
2
q
5
9
7
4
7

0 NIN\D _Jand
NN -oNN»
NSNNIN~weN
0 1HVe 00N
[ T N\ BN PN
VRN NIW Do

q
1
q
¢
b
Q
>
7

NN DO oW
INMANVA AN
NJIY N

N

Objective: minimize negative log-likelihood & match target diversity
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Results: MNIST with changing frequencies

B1 is the baseline where a U-Net is trained from scratch using only the

target data.
B2 is the baseline where we directly fine-tune an auxiliary U-Net with

frequencies {'7": 70%, ‘9": 30%}.

Digit frequencies estimated by a SOTA classifier.

- 26 2 210 2

Digit  Target | g 3 ous | BL B2  Ous | BL B2 Ous | BL B2  Ours
7 60% | 47.9% 72.4% 556% | 668% 0655% 57.5% | 655% 065.1% 56.6% | 66.7% 655% 59.8%
9 40% |103% 23.2% 39.4% | 23.8% 20.9% 38.0% | 26.7% 30.6% 39.8% | 27.9% 30.4% 36.7%
Others 0 | 41.8% 4.4% 5.0% | 94% 46% 4.5% | 7.8% 43% 3.6% | 54% 41% 3.5%
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Example 2: Generating a New Facial Distribution

Task: Given two auxiliary generative models, each with a monotonic
human face representation, how to fuse them to generate face images that
organically blend features from both subgroups?

Baseline: A popular empirical method called Checkpoint Merging [Biggs
et al. 2024] creates a new generative model by weighted averaging
weights of the two neural networks parametrizing the two models.
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Auxilary data sources

Figure 1: Top: portraits sampled from the first auxiliary model. It was finetuned
on images of people identifying as White male. Bottom: portraits sampled from
the second auxiliary model. It was finetuned on images of people identifying as

Asian female.
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Sampling from a Low Probability Region

(a) KL barycenter: gender-neural, (b) Checkpoint merging: two clus-
smooth transitions ters

Figure 2: Comparision of Portraits sampled from the KL barycenter and
checking merging distributions of the two auxiliary models. A = (0.5,0.5).
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Conclusions

A-KL-barycenter is useful if
Target in "KL convex hull” of auxiliaries.
Auxiliaries are well-trained.
ScoreFusion mitigates curse of dimensionality.
Connection to checkpoint merging.
ScoreFusion can generate samples from low probability region.
Compatibility with existing Al workflow

A user can easily adapt the U-Net training pipeline in the popular
Diffusers library to ScoreFusion training with a few lines of code.
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Conclusions
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