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Introduction to DRO and optimal transport

Motivation

Stochastic optimization problem:

inf
β∈Rd

EP∗ [`(X ;β)],

P∗ : Ground truth distribution, / usually unknown in practice.

⇓
Empirical risk minimization (ERM):

inf
β∈Rd

EPn [`(X ;β)],

Pn : Empirical distribution.
/ : Overfitting ⇒ poor out-of-sample performance.

/ : Non-robustness ⇒ adversarial examples [Goodfellow et al., 2014].
⇓

Robust data-driven framework.
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Introduction to DRO and optimal transport

DRO formulation

Distributionally Robust Optimization (DRO):

inf
β∈Rd

sup
P∈U

EP [`(X ;β)]︸ ︷︷ ︸
worst case expectation

,

U : distributional uncertainty set.

Construction of distributional uncertainty set U :

U = Uδ(Pn) = {P ∈ P(S) : D(P,Pn) ≤ δ}

Choices of D(·, ·): f−divergence, optimal transport cost
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Introduction to DRO and optimal transport

Literatures on DRO

f-divergence: [Bagnell, 2005; Ben-Tal et al., 2013; Bertsimas, Gupta &

Kallus, 2013; Hu & Hong 2013; Lam, 2013; 2016; Wang, Glynn & Ye, 2014;

Bayrakskan & Love, 2015; Duchi, Glynn & Namkoong, 2016; Duchi &

Namkoong, 2016; 2017]

Optimal transport: [Esfahani & Kuhn, 2018; Blanchet & Murthy, 2019;

Gao & Kleywegt, 2016; Blanchet, Kang & Murthy, 2016; Gao, Chen &

Kleywegt, 2017; Sinha, Namkoong & Duchi, 2017; Nguyen, Kuhn &

Esfahani, 2018; Nguyen et al., 2018; Blanchet et al., 2019]
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Introduction to DRO and optimal transport

Optimal transport

Let P ∈ P(S) and Q ∈ P(S) be two probability distributions defined
on a space S ; c : S × S → [0,∞] is a cost function.

Optimal transport cost:

Dc(P,Q) = inf
π

{
Eπ[c(U,V )] | π ∈ P(S × S), πU = P, πV = Q

}

Advantages:

P and Q are not required to have the same support;
Continuous distributions are included;
General enough to cover popular distances used in practice,

c(u, v) = ‖u − v‖ρ =⇒ D
1/ρ
c : ρ-Wasserstein distance;

c(u, v) = 1{u 6= v} =⇒ Dc : total variation distance.
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Introduction to DRO and optimal transport

DRO estimators

Square-root LASSO [Belloni, Chernozhukov and Wang 2011]:

`((x , y);β) = ‖y − βT x‖2
2

Pn =
1

n

n∑
i=1

δ(Xi ,Yi )(dx , dy)

c((x , y), (x ′, y ′)) = ‖x − x ′‖2
q +∞ · 1{y 6= y ′}

DRO is equivalent to the square-root LASSO [Blanchet, Kang and
Murthy, 2016],
(1/p+1/q = 1)

sup
P:Dc (P,Pn)≤δ

EP [` ((X ,Y );β)] =
(√

EPn [`((X ,Y );β)] +
√
δ‖β‖p

)2
.

Regularized logistic regression, SVMs...
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Asymptotic behaviors and confidence regions of DRO estimators
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Asymptotic behaviors and confidence regions of DRO estimators

The asymptotic behaviors of DRO estimators?

Suppose X1,X2, . . . ,Xn
i .i .d .∼ P∗,

βERMn ∈ arg min
β

EPn [`(X ;β)] ,

βDRO
n (δ) ∈ arg min

β
sup

P ∈Uδ(Pn)
EPn [`(X ;β)] ,

β∗ = arg min
β

EP∗ [`(X ;β)] .

We want to study the joint limit of(
n1/2(βERMn − β∗), n?(βDRO

n (δn)− β∗)
)

with the correct scaling rate.

The suitable confidence regions in DRO problems?
We want to find a confidence region Λn that

βERMn ∈ Λn, β
DRO
n (δn) ∈ Λn and lim

n→∞
P (β∗ ∈ Λn) = 1− α.
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Asymptotic behaviors and confidence regions of DRO estimators

“Compatible”set

Define “Compatible”set as

Λδn(Pn) :=

{
β ∈ Rd : β ∈ arg min

β
EP [`(X ;β)] for a P ∈ Uδn(Pn)

}
.

Λδn(Pn) denotes the set of choices of β ∈ Rd that are “compatible”
with the distributional uncertainty region, in the sense that for every
β ∈ Λδn(Pn), there exists a probability distribution P ∈ Uδn(Pn) for
which β is optimal.

Λδn(Pn) naturally serves as a good candidate of confidence regions.
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Asymptotic behaviors and confidence regions of DRO estimators

Preliminaries

We consider the cost function with the form c(u,w) = ‖u − w‖2
q.

Let h(x , β) := Dβ` (x , β) be the gradient of the loss function and
C := E [Dβh(X , β∗)] � 0.

Define

ϕ(ξ) :=
1

4
EP∗

(∥∥∥(Dxh(X , β∗))T ξ
∥∥∥2

p

)
,

where 1/p + 1/q = 1 and its convex conjugate:

ϕ∗(ζ) := sup
ξ∈Rd

{
ξT ζ − ϕ(ξ)

}
.

Define
S(β) :=

√
EP∗‖Dx`(X ;β)‖2

p.
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Asymptotic behaviors and confidence regions of DRO estimators

Main asymptotic theorem

Theorem (Main theorem)

Suppose ` (x , ·) is convex and ` (·) satisfies mild regularity conditions. Let
δn = n−γη for γ,η ∈ (0,∞), and H ∼ N (0,Cov [h(X , β∗)]). Then,(

n1/2(βERMn − β∗), nγ̄/2(βDRO
n (δn)− β∗), n1/2 (Λδn(Pn)− β∗)

)
⇒
(
C−1H, C−1fη,γ(H), Λη,γ + C−1H

)
,

where γ̄ := min {γ, 1} and fη,γ(x),Λη,γ will be defined later according to γ.
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Asymptotic behaviors and confidence regions of DRO estimators

Main asymptotic theorem : Remarks

This theorem works for every scaling rate δn = η/nγ , γ > 0. However, only
δn = η/n gives the non-trivial limits.

γ > 1: Lack of robustness. βDRO
n and βERMn are asymptotically

indistinguishable,

n1/2
(

(βERM
n − β∗), (βDRO

n (δn)− β∗), (Λδn (Pn)− β∗)
)
⇒

(
C−1H,C−1H, {C−1H}

)
.

γ < 1: Excessive robustness. Slow convergence rate and an
asymptotically bias,(

nγ/2(βDRO
n (δn)− β∗), n1/2 (Λδn(Pn)− β∗)

)
⇒
(
−√ηC−1DβS(β∗),Rd

)
.
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Asymptotic behaviors and confidence regions of DRO estimators

Main asymptotic theorem : γ = 1

γ = 1: non-trivial limits.

n1/2
(

(βERMn − β∗), (βDRO
n (δn)− β∗), (Λδn(Pn)− β∗)

)
⇒
(
C−1H, C−1H −√ηC−1DβS(β∗), {u : ϕ∗(Cu) ≤ η}+ C−1H

)
.

Here, Λη,1 is defined by

Λη,1 = {u : ϕ∗(Cu) ≤ η} .
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Asymptotic behaviors and confidence regions of DRO estimators

Confidence regions: δn = η/n

DRO solution is inside the ”compatible” set (βDRO
n (δn) ∈ Λδn(Pn)),

because of the proposition below.

Proposition (Blanchet et.al., 2016)

If ` (x , ·) is convex, we have for any δ > 0,

inf
β

sup
P:D(Pn,P)≤δ

EP [`(X ;β)] = sup
P:D(Pn,P)≤δ

inf
β
EP [`(X ;β)] .

Λδn(Pn) has exact asymptotic coverage.

lim
n→∞

P (β∗ ∈ Λδn(Pn)) = P(−C−1H ∈ {u : ϕ∗(Cu) ≤ ηα})

= P(ϕ∗(H) ≤ η) = 1− α.

where ηα is the (1− α)-quantile of the random variable ϕ∗(H).
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Asymptotic behaviors and confidence regions of DRO estimators

Approximation of confidence regions

Λδn(Pn) is generally challenging to compute. Here we provide an
approximation of Λδn(Pn) based on the following corollary.

Corollary (informal)

Under the assumptions of main theorem, we have (omitting γ in Λη,γ)

Λδn(Pn) ≈ βERMn + n−1/2Λη ≈ βERMn + n−1/2Λn
η.

where Λn
η := {u : ϕ∗n(Cnu) ≤ η} and ϕn(·),Cn are the empirical analogs of

ϕ(·),C .
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Asymptotic behaviors and confidence regions of DRO estimators

Computation of confidence regions

Evaluating convex conjugate is generally time-consuming. We give a
computationally efficient algorithm of Λη using support function.

For any u1, ..., um ∈ Rd , with ‖ui‖2 = 1 we have

Λη = ∩u{v : u · v ≤ hΛη (u)} ⊂ ∩u1,...um{v : ui · v ≤ hΛη (ui )}.

We can sample directions u1, ..., um to obtain a tight envelope of Λη.

hΛη(v) is the support function of the convex set Λη, defined as

hΛη(x) := sup
a
{x · a : a ∈ Λη} = 2

√
ηϕ(C−1v),

A completely analogous method can be used to estimate Λn
η.
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Geometric insights via a numerical example

Confidence regions of square-root LASSO
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Figure: Confidence regions for different norms centered at the ERM solution
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Contributions

Contributions

Asymptotic normality of Wasserstein-DRO estimators: arbitrary
scaling of uncertainty size.

Suitable confidence regions for DRO problems: coverage,
approximation and computation.
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