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Motivation: unknown risk in online experiments

A/B tests

A/B tests: effectively identify the best from a pool of different designs.
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Motivation: unknown risk in online experiments

Safety and risky new design

New designs could be risky: incur large costs and a simple mistake may threaten
the whole system.

1

1https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
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Motivation: unknown risk in online experiments

Unknown risk in online experiments

A safety budget is set to regulate the total cost that can be tolerated in the
experiment.

0 200 400 600 800 1000
-40

-30

-20

-10

0

Experimental reward before hitting the budget

Experimental reward after hitting the budget

Budget C=30

niansi@stanford.edu (Stanford) Safe A/B Tests October 18, 2022 5 / 35



Formulation and main results by large deviation principles

Formulation: ranking and selection

One control action with known mean reward µ0; K treatment actions with unknown
mean rewards µ1, . . . , µK and follow Gaussian distributions Xi ∼ N (µi , σ

2
i ).

At time t, a treatment action It ∈ {1, 2, . . . ,K} is chosen and a random reward
XIt ,t is revealed.

The experiment horizon is T and the safety budget is C . Define the stopping time

τC ,T = T ∧ inf

{
t

∣∣∣∣∣
t∑

s=1

XIs ,s ≤ µ0t − C

}
.

IτC ,T+1 is the experimenter’s decision of the treatment action with the highest mean
upon stopping. Goal: minimize the probability of false selection:

P
{
IτC ,T+1 /∈ arg max

1≤i≤K
µi

}
.
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Formulation and main results by large deviation principles

Literature review

Safety concerns in standard practice of A/B tests in industry [Xu et al., 2018,
Kohavi et al., 2020];

Ranking and selection [Chen et al., 2000, Glynn and Juneja, 2004, Batur and Kim,
2005, Morrice and Butler, 2006, Kim and Nelson, 2006, Hong and Nelson, 2007,
Chick and Gans, 2009, Frazier et al., 2009, Andradóttir and Kim, 2010, Waeber
et al., 2010, Lee et al., 2012, Chick and Frazier, 2012, Healey et al., 2013, Hunter
and Pasupathy, 2013, Pasupathy et al., 2014, Song et al., 2015, Hunter and
Nelson, 2017, Gao et al., 2018, Lam and Li, 2018, Wu and Zhou, 2018, Chen and
Ryzhov, 2019, Hong et al., 2021, Kim et al., 2022];

Best arm identification [Even-Dar et al., 2002, Mannor and Tsitsiklis, 2004,
Audibert et al., 2010, Gabillon et al., 2012, Karnin et al., 2013, Jamieson and
Nowak, 2014, Chen and Li, 2015, Garivier and Kaufmann, 2016, Kaufmann et al.,
2014, 2016, Russo, 2020, Agrawal et al., 2020];
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Formulation and main results by large deviation principles

Literature review: continue

Feasible arm identification: Find the best treatment for one key metric provided
that other metrics are not bad [Katz-Samuels and Scott, 2018, 2019];

Safe and conservative contextual bandit and reinforcement learning [Driessens and
Džeroski, 2004, Koppejan and Whiteson, 2009, Taylor and Stone, 2007, Garcıa and
Fernández, 2015, Wu et al., 2016, Kazerouni et al., 2017, Amani et al., 2019, Xu
et al., 2021];

Connections between regret minimization and best arm identification. [Degenne et
al, 2019, Zhong et al, 2021].
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Formulation and main results by large deviation principles

Our results: setup

Limiting regime: C ,T → +∞ with T/C → β, where β represents the safety level.

β ↑ means relatively small C ⇒ safer.

Gaussian setting: Xi ∼ N (µi , σ
2
i ) with µ1 > µ2 ≥ . . . ≥ µK .

Static allocation rule
∑K

i=1 pi = 1 stationary over time: up to time t, we collect pi t
samples from the treatment action i for every t ≤ τC ,T .

Decision rule: IτC ,T+1 ∈ argmax1≤i≤K X̄i(τC ,T ).
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Formulation and main results by large deviation principles

The main theorem

Theorem

For C ,T → +∞ with T/C → β, Xi ∼ N (µi , σ
2
i ) with µ1 > µ2 ≥ . . . ≥ µK , any

allocation rules uniform over time and the empirical-maximizer decision rule, we have

lim
C ,T→∞

− 1

C
log

(
P
(
IτC ,T+1 ̸= 1

))
= min

j≥2
{min {Hj(p), βGj(p)}} ,

where

Gj(p) =
(µ1 − µj)

2

2
(
σ2
1/p1 + σ2

j /pj
) ,

Hj(p) corresponds to the event of early stopping, i.e., τC ,T < T , and wrong
selection of the j-th action, i.e., X̄j(τC ,T ) > X̄1(τC ,T ), for j = 1, 2, . . . ,K .

Gj(p) corresponds to the event of stopping at time T , i.e., τC ,T = T , and wrong
selection of the j-th action, i.e., X̄j(τC ,T ) > X̄1(τC ,T ), for j = 1, 2, . . . ,K .
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Formulation and main results by large deviation principles

Comparision with the vanilla case without safety constraints

W/ safety W/o safety (C = +∞) 2

T/C = β range [0,+∞) β = 0
Stopping time τC ,T ≤ T

limT→∞− 1
T
log (PFS) minj≥2

{
min

{
1
β
Hj(p),Gj(p)

}}
minj≥2 {Gj(p)}

2Glynn and Juneja [2004]
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Formulation and main results by large deviation principles A special case on equal variances

Equal variances: σ2
1 = σ2

2 = . . . = σ2
K = V

Proposition

We assume Xi ∼ N (µi ,V) for i = 1, 2, . . . ,K and µ1 > µ2 ≥ . . . ≥ µK . For any
allocations p1, p2, . . . , pK satisfying

∑K
i=1 pi = 1. For C ,T → +∞ and T/C → β

lim
C ,T→∞

− 1

C
log

(
P
(
IτC ,T+1 ̸= 1

))
=

1

V
min

D +

√
D2 +min

j≥2

(µ1 − µj)
2

1/pj + 1/p1
, βmin

j≥2

{
(µ1 − µj)

2

2 (1/p1 + 1/pj)

} ,

where D is the mean extra reward per unit:

D =
K∑
i=1

pi (µi − µ0) .
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Formulation and main results by large deviation principles A special case on equal variances

Equal variances: optimal allocation

The optimal allocation p∗ = [p∗1, p
∗
2, . . . , p

∗
K ]

⊤ is defined as

{p∗1, p∗2, . . . , p∗K} = argmax
p≥0,

∑K
i=1 pi=1

min
j≥2

{min {Hj(p), βGj(p)}} .

Theorem

For the equal variance case, we have the optimal allocation rule satisfies

(µ1 − µi)
2

1/p∗1 + 1/p∗i
=

(µ1 − µj)
2

1/p∗1 + 1/p∗j
for i ̸= j ̸= 1. (1)
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Formulation and main results by large deviation principles A special case on equal variances

Comparison with the vanilla case without safety constraints

σ2
1 = σ2

2 = . . . = σ2
K = V .

The optimal allocation without safety constraints
{
p0,∗1 , p0,∗2 , . . . , p0,∗K

}
is defined as{

p0,∗1 , p0,∗2 , . . . , p0,∗K

}
= argmax

p≥0,
∑K

i=1 pi=1

min
j≥2

{Gj(p)} . (2)

W/ safety W/o safety (C = +∞) 3

T/C = β range [0,+∞) β = 0
Stopping time τC ,T ≤ T

limT→∞− 1
T
log (PFS) minj≥2

{
min

{
1
β
Hj(p),Gj(p)

}}
minj≥2 {Gj(p)}

Optimal allocation (µ1−µi )
2

1/p∗1+1/p∗i
=

(µ1−µj)
2

1/p∗1+1/p∗j

(µ1−µi )
2

1/p0,∗1 +1/p0,∗i

=
(µ1−µj)

2

1/p0,∗1 +1/p0,∗j

Leading probability p∗1 ≥ p0,∗1

3Glynn and Juneja [2004]
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Formulation and main results by large deviation principles A special case on equal variances

More structural insights

Stop at T:
{
p0,∗1 , p0,∗2 , . . . , p0,∗K

}
= argmax

p≥0,
∑K

i=1 pi=1

min
j≥2

{Gj(p)} ;

Early stop: {p∞,∗
1 , p∞,∗

2 , . . . , p∞,∗
K } = argmax

p≥0,
∑K

i=1 pi=1

min
j≥2

{Hj(p)} .

Theorem

For the equal variance case, we have Gj(p),Hj(p), j = 1, 2, . . .K are all quasi-concave.
Therefore, p∗1 is monotonic with respect to β, and there exists 0 ≤ β ≤ β ≤ +∞ (β, β
could possibly be zero or +∞) such that

p∗ =

{
p0,∗ for β < β

p∞,∗ for β ≥ β
,

and if β ∈ [β, β), p∗ satisfies minj≥2 {Hj(p
∗)} = βminj≥2 {Gj(p

∗)} .
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Formulation and main results by large deviation principles A special case on equal variances

Numerical Illustrations for the Equal-Variance Case
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Numerical illustrations

Optimal allocation
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Figure 1: The optimal allocation rules with respect to different β = T/C for K = 4 actions
with equal variances and µ0 = 0

β ββ β = ∞
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Numerical illustrations

Probability of false selection
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(a) µ1 = 0.2, µ2 = 0.1, µ3 = 0.0, µ4 = −0.1,
T/C = β = 1000
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Figure 2: The probability of false selection with respect to different horizons T for K = 4
actions with equal variances and µ0 = 0

niansi@stanford.edu (Stanford) Safe A/B Tests October 18, 2022 18 / 35



Numerical illustrations

Probability of false selection: model misspecification

Two-point distributions supported on {−1, 1}: for i = 1, 2, 3, 4

P{Xi = 1} = 1/2 + µi/2 and P{Xi = −1} = 1/2− µi/2;

Consider optimal allocation rules derived under Gaussian assumptions.
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−0.3, T/C = β = 50
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Numerical illustrations

Conclusion

We emphasize the importance of safety in online A/B tests and we propose a
framework to study this issue based on ranking and selection.

We provide a large deviation theory for the probability of false selection.

We explicitly solve the optimal sampling budget allocation problem that minimizes
the probability of false selection under safety constraints for the equal-variance case.

The optimal allocation rule exhibits similar structures with the vanilla rule without
safety considerations but has a systematical shift.
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The paper

Nian Si, Jose Blanchet, Ramesh Johari, and Zeyu Zheng. “A/B Tests under a Safety
Budget: A Simulation-Optimization Point of View.” Available soon, 2022+.
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Appendix

Results without the budget constraint4

No budget constraint and stop at time T . Gaussian setting: Xi ∼ N (µi , σ
2
i ).

Assume µ1 > µ2 ≥ . . . ≥ µK .

For the allocation rule
∑K

i=1 pi = 1 and the decision rule
IT+1 ∈ argmax1≤i≤K X̄i(T ):

lim
T→∞

− 1

T
log (P (IT+1 ̸= 1)) = min

j≥2

{
(µ1 − µj)

2

2
(
σ2
1/p1 + σ2

j /pj
)} . (*)

Optimal decision rule satisfies

(µ1 − µi)
2

σ2
1/p

∗
1 + σ2

i /p
∗
i

=
(µ1 − µj)

2

σ2
1/p

∗
1 + σ2

j /p
∗
j

for i ̸= j . (**)

4Glynn and Juneja [2004]
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Appendix

Our results: details

Gj(p) is the same as the large deviation rate function in the vanilla case without
safety constraints (*).

Hj(p) satisfies

Hj(p) = H
(1)
j (p) := 2D/V if µ1 − µj < 2

(
σ2
1 − σ2

j

)
(D/V) with D > 0,

and otherwise, Hj(p) = H
(2)
j (p) :=(

(µ1−µj)(σ2
j −σ2

1)
σ2
j /pj+σ2

1/p1
+D

)
+

√(
D +

(σ2
j −σ2

1)(µ1−µj)
σ2
j /pj+σ2

1/p1

)2

+
(µ1−µj)

2

σ2
j /pj+σ2

1/p1

(
V − (σ2

j −σ2
1)

2

σ2
j /pj+σ2

1/p1

)
V − (σ2

j −σ2
1)

2

σ2
j /pj+σ2

1/p1

,

where V is the variance per unit and D is the mean extra reward per unit:

V =
K∑
i=1

piσ
2
i , and D =

K∑
i=1

pi (µi − µ0) .
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Appendix

Comparison with the control action

Our theorem also holds when some of σi ’s is zero and as long as
∑K

i=1 piσ
2
i > 0.

Therefore, we allow some treatment action i to be a control action, i.e., µi = µ0 and
σi = 0. In particular, if µ1 = µ0 and σ1 = 0, we have for j = 2, . . . ,K

Hj(p) = H
(2)
j (p)

=

∑K
i=2,i ̸=j pi (µi − µ0) +

√(∑K
i=2,i ̸=j pi (µi − µ0)

)2

+
pj
σ2
j
(µ1 − µj)

2
(∑K

i=2,i ̸=j piσ
2
i

)
∑K

i=2,i ̸=j piσ
2
i

.

Otherwise, if µj = µ0 and σj = 0 for j ̸= 1, we have

Hj(p) = H
(1)
j (p) = 2D/V =

2
∑K

i=1,i ̸=j pi (µi − µ0)∑K
i=1,i ̸=j piσ

2
i

.
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Appendix

Special case 2: two treatment actions

K = 2.

Proposition

We assume K = 2, Xi ∼ N (µi , σ
2
i ) for i = 1, 2, and µ1 > µ2. For any allocations p1, p2

satisfying p1 + p2 = 1, we have

H
(2)
j (p) =

√(
p1
σ2
1

+
p2
σ2
2

)(
p1
σ2
1

(µ1 − µ0)
2 +

p2
σ2
2

(µ2 − µ0)
2

)
+

(
p1
σ2
1

(µ1 − µ0) +
p2
σ2
2

(µ2 − µ0)

)
.
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Appendix

Numerical algorithms

Top-two Thompson sampling (TTTS) method proposed in Russo (2020).

With probability α̂t , sample from the posterior distribution and select the largest.

With probability 1− α̂t , continue sampling until an action different from the first
sampling action is selected.

Consistently tuning α̂t .

Proposition (Consistency)

We assume Xi ∼ N (µi ,V) for i = 1, 2, . . . ,K and µ1 > µ2 ≥ . . . ≥ µK . Under the
algorithm, for Cn,Tn → +∞ with Tn/Cn → β, we have

lim
n→+∞

Ni(τn)

τn
= p∗i almost surely for i = 1, 2, . . . ,K .

niansi@stanford.edu (Stanford) Safe A/B Tests October 18, 2022 33 / 35



Appendix

Numerical performance: consistency
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(d) µ1 = 0, µ2 = −0.1, µ3 = −0.2, µ4 = −0.3

Figure 3: The convergence of the sampling proportions to the optimal allocations with
σ1 = σ2 = σ3 = σ4
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Appendix

Numerical performance: probability of false selection
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(a) µ1 = 0.2, µ2 = 0.1, µ3 = 0.0, µ4 = −0.1,
β = 1000
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(b) µ1 = 0.0, µ2 = −0.1, µ3 = −0.2, µ4 =
−0.3, β = 50

Figure 4: The probability of false selection with respect to different horizons T for TTTS/T3C
with fixed α̂ = p∗1 and α̂ = p0,∗1
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