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Abstract. In this paper we focus on transfer learning in a context in which: a) the target
distribution is unknown and the learning task is challenging due to a lack of or limited data; b)
there is a related (yet different) environment in which the target distribution can be estimated
with an acceptable or even high level of accuracy, and c) the knowledge transfer activity itself
induces bias and strategic behavior in the learning tasks and the data generating distributions.
While a) and b) are typically studied in transfer learning, c) is a key feature in our study
here. We apply our analysis to the task of transfer learning of the optimal (profit-maximizing)
bidding strategy from second- to first-price auctions. In this application setting, we achieve
distributionally robustness in various game-theoretic frameworks, where optimal equilibrium
knowledge transfer bidding policies are explicitly characterized.

1. Introduction

The goal of this paper is to study transfer learning and achieve robustness in a context in
which the transfer learning activity itself (through participating agents) introduces bias and
strategic behavior in the underlying domains and learning tasks.

We focus on strategic transfer learning with unknown target distributions; see, for example,
[30] for a discussion and [21] for a review of transfer learning (also known as knowledge transfer)
in general.

Transfer learning with unknown target distributions typically involves two basic elements:
a) the learning task under the target distribution is relatively challenging due to a lack of
information or limited data, and b) there is a related (yet different) environment and task
in which the target distribution can be estimated with an at least acceptably high degree of
accuracy. Here we introduce and study a new element, namely, c) the fact that one or several
agents will be able to apply knowledge transfer from one activity to another naturally introduces
strategic behavior and, therefore, biases in the data generating process and the learning task.

The knowledge transfer setting with unknown distributions presents a challenge for traditional
transfer learning methods. This is the case even if the target domain distribution is accessible
only through a limited amount of data because standard reweighting procedures may be subject
to substantial selection bias; see [7]. Thus, it is important to develop a robust method that
performs well in this uncertain environments, which arise in the context of unknown target
distributions. To achieve this goal, distributionally robust optimization (DRO) formulations
[9, 19, 12, 4] have been applied; see, for example, [30, 10, 11], and [26]. In the distributionally
robust optimization, one optimizes the worst case loss, where the underlying distribution is
allowed to vary in a distributional uncertainty set centered on a reference measure. In this
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work, we also apply distributionally robust optimization, but we are also required to take into
account strategic behavior in the transfer learning process.

When combining both transfer learning and strategic behavior, we naturally connect sev-
eral important areas that are traditionally disconnected, namely, transfer learning in machine
learning and robust game theory in economics and operations research. We see this as our first
contribution in this paper. The connections between these areas and our work are discussed in
Section 4, after we introduce our quantitative results.

In turn, this connection leads to our second contribution, namely, motivated by the need for
obtaining less conservative estimates (relative to those derived from robust game theory), we
introduce a concept for the study of strategic behavior, which we call “global distributionally
robust Nash equilibrium,”introduced and discussed in Section 3.2. We believe learning according
to this new concept leads to a better performance in the strategic transfer learning context.

Finally, we apply our insights to a particular setting involving optimal bidding policies for
transfer learning with unknown distributions from second-price auctions to first-price auctions.
In this setting, we are able to show explicit characterizations or closed-form approximations for
various forms of distributionally robust optimal bidding policies – which in turn are interpreted
as optimal strategic transfer learning strategies.

In addition to being natural and important from an applied standpoint, optimal bidding
policies provide an excellent case-in-point for our conceptual framework. To illustrate this,
consider the setting of auctions in the online advertising industry. In this setting, publishers
sell ad impression opportunities through auctions organized by ad exchanges [20]. Demand-side
platforms (DSPs) bid, on behalf of advertisers, for these ad impression opportunities. DSPs
need to optimize the bids on behalf of advertisers, and they should try to infer the bid of the
highest competitor. This is often done by using data collected from repeated auctions – but
it is important to keep in mind that the ad impression opportunities, the auction participants,
and the campaigns from which the data is collected are different for various auctions.

For the sake of simplicity, we focus only on two types of auction design mechanisms: first-price
auctions and second-price auctions. There are other designs which can be seen as combinations
of the two basic types, but we do not consider those to simplify our exposition.

In a second-price auction mechanism, the DSPs are able to elicit much more information than
in the first-price auction. This is so because the winning DSP gets to know the second-highest
bidding price (i.e., the highest competing bid) after winning. In a first-price auction, on the
other hand, the winner of the auction does not get to learn any information about the rest of
the bids sent by its competitors – other than that the winning bid was obviously higher than
any other bid.

A common scenario in online advertising occurs when many ad impression opportunities
across two exchanges (one running a first-price auction and another one operating a second-
price auction) may be similar in nature, e.g., from similar websites, the same ad slots, etc.
This scenario may seem to fit well within a transfer learning task. But this cannot be done
directly and it is where the application of our framework becomes apparent. First of all, as
mentioned earlier, the data may not follow the exactly same distribution. And, second, the
set of DSPs bidding on these different types of auctions of ad impression opportunities may
coincide. However, this creates an incentive for strategic behavior, since DSPs who participate
in both auctions will naturally decide to try to inform their bids based on the information
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gathered from both auctions. This strategic behavior complicates the transfer learning task
from the second-price auction domain to the first-price auction domain.

This scenario is modeled in Section 2 by introducing a profit maximization formulation for
optimal bidding strategies. We supply several key technical results in Section 3 and discuss our
results with the related literature in Section 4. Then, we illustrate our results visually using
concrete examples in Section 5. Section 6 discusses results in the heterogeneous setting. We
conclude with a discussion on potential future research and applications in Section 7.

2. Preliminaries and Assumptions

We consider that similar ad impression opportunities are run in two exchanges: A and B.
Exchange A uses a second-price auction mechanism, where the bidder who bids the highest
price wins the auction, but only needs to pay the price offered by the second-highest bidder;
while Exchange B uses a first-price auction mechanism, where the highest-price bidder wins the
auction and pays the exact amount of his bidding price. Specifically, we denote the bidder’s
value as u, the bidder’s bidding price as b, the reservation price as r, and the highest competing
prices as VA,VB in Exchanges A and B, respectively (where VA and VB are random). Bidders
with value u ≥ r, in Exchange A optimize maxb∈[r,u]E [(u− VA) I {VA < b}] , where I{·} denotes
the indicator function, and in Exchange B, they optimize maxb∈[r,u] (u− b)P (VB < b) . Bidders
with value u < r will not enter the auction, and we simply say they bid b = 0 and the payoff is
zero.

Recall that bidding truthfully b = u in the second-price auction is the weakly dominant
strategy. Therefore, we assume that the highest competing value in the second-price exchange
A is precisely the highest competing bid VA. From the data we collect from Exchange A, we
obtain an estimate of the highest competing value. The goal here is to design a robust bidding
policy to transfer the knowledge from the second-price exchange A to the first-price exchange
B.

Under the first-price mechanism, bidders will discount their bids. Therefore, it is not appro-
priate to directly use the distribution of the competitive landscape in Exchange A, even if we
know that the competition may still be similar. We thus attempt to characterize a transforma-
tion, based on an equilibrium argument, which may provide a sensible way to gaining insight
into the landscape expected in Exchange B, given the landscape in Exchange A. In order to do
this, we first list standard assumptions in the literature (see, for example, [22]).

Assumption 1. (1) There are N+1 bidders in the auction, where bidder i has value ui, i =
1, 2, . . . , N + 1. Bidders can exit with a bid bi = 0, or submit a bid above the reservation
price r.

(2) The value of bidders Ui are independent and identically distributed, which follows a
common distribution FU (u) with FU (u) = 0, FU (u) = 1 and FU (u) is strictly increasing
and has a continuous density fU (u) over the interval [u, u], with u < r < u.

(3) Each bidder makes a bid bi, which is a strictly increasing and continuous function of
their value ui, bi = s(ui), i = 1, . . . , N + 1, with s(·) ∈ IC ([r, u]) , where IC ([r, u])
denotes the collection of all strictly increasing and continuous functions over [r, u].

Assumption 1.1 captures the key features of the ads bidding auctions in practice; Assumption
1.2 guarantees a tractable Nash equilibrium in the standard non-robust setting; Assumption 1.3
is natural since people tend to bid higher if they believe the opportunity has a larger value.
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Suppose we are the bidder N + 1 and let V denote the highest competing value in Exchange
B, i.e.,

V = max (U1, ..., UN ) .

Then, under Assumption 1, V has a strictly increasing CDF FV (·) and a continuous density
bounded away from zero fV (·). Further, in the symmetric equilibrium, the highest competing
bid VB is max (s (U1) , ..., s (UN )) = s (V ) .

If the distribution of the highest competing value in Exchange A VA is known accurately
to everyone, and Exchanges A and B have exact the same environments, i.e., V = VA, the
knowledge can be transferred perfectly from Exchange A to Exchange B. Therefore, rational
bidders in Exchange B will optimize:

max
b∈{0}∪[r,u]

(u− b)P (s (V ) < b) .

It is well-known that there exists a Bayesian Nash equilibrium of the first-price auction (see,
for example, [22]).

Proposition 1. Under Assumption 1, the symmetric Bayesian Nash equilibrium strategy is

b∗NE (u) = u−
∫ u
r FV (x) dx

FV (u)
, for u ∈ [r, u]. (1)

3. Strategic Transfer Learning from Second to First-price auctions

However, in practice, there are three sources of uncertainties preventing bidders from bidding
the Nash equilibrium (1):

(1) The highest competing value cannot be estimated perfectly.
(2) There are small differences between two exchanges. For example, there may be different

groups of bidders or slightly different slots in the websites.
(3) Bidders may hold different beliefs and deviate from the equilibrium.

Therefore, we propose our robust bidding policy to perform strategic transfer learning from
second to first-price auctions. Suppose V̂ is an estimate of the highest competing value V,
obtained from the second-price data. To reflect the ambiguity nature, we modify Assumption
1 to Assumption 2.

Assumption 2. (1) There are many agents participating in the auction. Each agent faces
the same distribution of the highest competing value, which is independent of their own
value.

(2) The estimated highest competing value V̂ follows the distribution F̂V (u) with F̂V (u) =

0, F̂V (u) = 1 and F̂V (u) has a continuous density f̂V (u) bounded away from zero over

the interval [u, u]. We further denote P̂V as the probability measure induced by random

variable V̂ .
(3) The true highest competing value V is inside an uncertainty set around P̂V , i.e.,

PV ∈ Uδ
(
P̂V

)
:= {P ∈ P ([0,+∞)) |D(P, P̂V ) ≤ δ},

where D(·, ·) is some divergence notion in the measure space and P([0,+∞)) denotes
the Borel probability space on [0,+∞).

(4) The highest competing bid b is a strictly increasing and continuous function of the highest
competing value, i.e. b = s(u), with s(·) ∈ IC ([r, u]) , where r > u is a reservation price.
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Assumption 2.1 is approximately correct in practice due to reasons that we shall discuss in
Section 6; Assumption 2.2 is an analog of Assumption 1.2 to guarantee a tractable solution, but

note in Assumption 2.3, we do not require the measures in the uncertainty set Uδ
(
P̂V

)
to be a

continuous distribution.

3.1. Distributionally Robust Nash Equilibrium. We consider ambiguity averse bidders
with maxmin utility [13]. We define a concept of symmetric distributionally robust Nash equi-
librium (DRNE) in the first-price bidding setting.

Definition 1 (Distributionally robust Nash equilibrium). A strategy b∗(·) = s∗(·) is called
symmetric distributionally robust Nash equilibrium if

inf
PV ∈Uδ(P̂V )

{u− b∗ (u)}PV (s∗(V ) ≤ b∗ (u)) ≥ inf
PV ∈Uδ(P̂V )

{u− b}PV (s∗(V ) ≤ b) ,

for any b ≥ r.

Therefore, in the distributionally robust Nash equilibrium, bidders choose the best response
with respect to the worst case distribution in the uncertainty set. In other words, bidders
robustify against an adversary that is allowed to choose any distributions in the uncertainty
set. In this section, we consider the following distance notion:

Dp (P,Q) :=

(∫ ∞
0
|P (V1 ≤ x)−Q (V2 ≤ x)|p dx

)1/p

, (2)

for p ≥ 1. When p = 1, this distance is known as the optimal transport distance or the
Wasserstein distance of order 1 (see, for example, [29]). It turns out that

D1 (P,Q) = min{Eπ |V1 − V2| :
π is a joint distribution of (V1, V2)

such that the marginal distribution of V1 is P and

the marginal distribution of V2 is Q}.

Proposition 2 shows that Dp(·, ·) is indeed a metric.

Proposition 2. Dp (P,Q) is a metric in P1([0,+∞)) for p ≥ 1, where P1([0,+∞)) denotes
the collection of all probability measure on [0,+∞) with a finite first moment.

Proof. Notice that

Dp(P,Q) =

(∫ ∞
0
|P (V1 ≤ x)−Q (V2 ≤ x)|p dx

)1/p

≤
(∫ ∞

0
|P (V1 ≤ x)−Q (V2 ≤ x)|dx

)1/p

≤ D1 (P,Q)1/p .

Therefore, for any P,Q ∈ P1([0,+∞)), we have Dp(P,Q) <∞.
Then, it is easy to check Dp(P,Q) ≥ 0, Dp(P,Q) = 0 ⇔ P = Q, and Dp(P,Q) = Dp(Q,P ).

And the triangle inequality is obtained by the triangle inequality for LP -norm. �

Then, we give a characterization of the DRNE in Theorem 1.
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Theorem 1. Let u0 be the solution of the equation(∫ u0

u
F̂V (t)pdt

)1/p

= δ.

Under Assumption 2, the symmetric DRNE of first-price auction with Dp (·, ·) distance uncer-
tainty sets is any strictly increasing and continuous function in [r, u] with

b∗DRNE (u) = u−
∫ u

max(r,u0)
F̂ δV (x) dx/F̂ δV (u)

for u ≥ max(r, u0), where F̂ δV (u) = F̂V (−λu + u) and λu is the unique solution of

δ =

(∫ u

u−λu
(F̂V (t)− F̂V (u− λu))pdt

)1/p

.

The proof of Theorem 1 relies on Lemma 1 below. We first denote Upδ
(
P̂V

)
:= {P ∈

P ([0,+∞)) |Dp(P, P̂V ) ≤ δ}.

Lemma 1.

inf
P∈Upδ (P̂V )

P (V ≤ u) =

 0
(∫ u

u F̂V (t)pdt
)1/p

< δ

P̂V (V ≤ u− λu)
(∫ u

u F̂V (t)
p
dt
)1/p

≥ δ
,

where

δp =

∫ u

u−λu

∣∣∣F̂V (t)− F̂V (u− λu)
∣∣∣p dt.

Proof. If
(∫ u

u F̂V (t)pdt
)1/p

< δ, consider the probability measure

Q (V < u+ ε) = 0 and Q (V ≤ t) = P̂V (V ≤ t) for t ≥ u+ ε.

There exists ε > 0 such that(∫ ∞
0

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣dt)1/p

=

(∫ x+ε

u

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣ dt)1/p

< δ.

Therefore, infP∈Uδ(PVn ) P (V ≤ u) = 0.

If
(∫ u

u F̂ (t)
p
dt
)1/p

≥ δ, consider the distribution

Qε1 (V < t) = P̂V (V < t) for t ≤ u− λu + ε1,

Q (V < u+ ε1) = P̂V (V < u− λu + ε1)

and Q (V ≤ t) = P̂V (V ≤ t) for t ≥ u+ ε2.

For any ε1 > 0, there exists ε2 > 0, such that(∫ ∞
0

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣ dt)1/p

=

(∫ u+ε

u−λu+ε1

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣ dt)1/p

≤ δ.
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Therefore, we have

inf
P∈Uδ(P̂V )

P (V ≤ u) ≤ inf
ε1>0

P̂V (V < u− λu + ε1)

= P̂V (V ≤ u− λu) .

On the other hand, for any probability measure Q(V ≤ u) < P̂V (V ≤ u− λu), we have(∫ ∞
0

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣ dt)1/p

>

(∫ u

u−λu

∣∣∣P̂V (V1 ≤ t)−Q (V2 ≤ t)
∣∣∣dt)1/p

≥
(∫ u

u−λu

∣∣∣F̂V (t)− F̂V (t− λu)
∣∣∣p dt

)1/p

= δ.

�

The remaining proof of Theorem 1 is in Appendix A.1.

Remark 1. [16, 17] consider this problem with different assumptions. They require all proba-
bility distributions in the uncertainty set to be strictly increasing and continuous. Contrary to
their results, we relax this assumption and give a closed-form solution corresponding to Dp (·, ·)
distance uncertainty sets.

The distributionally robust Nash equilibrium could be viewed as the Nash equilibrium with
the belief F̂ δV (u). However, the distribution F̂ δV (u) is not in {P ∈ P([0,+∞)|D(P, P̂V ) ≤ δ},
which means DRNE is robust against an unrealistic bad distribution. Therefore, DRNE is
overly conservative, which may cause a bad performance in the strategic transfer learning task.

3.2. Global Distributionally Robust Nash Equilibrium. To address the conservativeness
of DRNE, we propose the concept of global distributionally robust Nash equilibrium (GDRNE).
Before stating the definition, we make a further assumption about the distribution of bidders’
own value.

Assumption 3. The agent knows the distribution of their own value distribution FU (·) with
no uncertainty. Assume FU (u) = 0, FU (u) = 1, and the associated density fU (u) is continuous
differentiable over the interval [u, u].

Assumption 3 is natural since in practice the bidders have a full control of their value predic-
tion algorithms and are able to estimate their own value distribution without any uncertainties.
Instead of only focusing on a one-time bidding problem in Section 3.1, we consider a long-time
average performance of the bidding system in a DSP. Suppose there are M auctions with our
value Ui, i = 1, 2, . . . ,M , for each auction and we maximize the average performance under an
unknown distribution P of the highest competing value, i.e.,

1

M

M∑
i=1

max
bi∈{0}∪[r,Ui]

(Ui − bi)PV (s(V ) < bi)

≈E
[

max
b(U)∈[r,U ]

{U − b(U)}PV (s(V ) < b(U)|U)I {U ≥ r}
]
.

This global nature of the learning task motivates us to propose a new concept of global distri-
butionally robust Nash equilibrium.
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Definition 2 (Global distributionally robust Nash equilibrium). A strategy b∗(·) = s∗(·) is
called symmetric distributionally robust Nash equilibrium if

inf
PV ∈Uδ(P̂V )

EU [{U − b∗ (U)}× PV (s∗(V ) ≤ b∗ (U) |U) I {U ≥ r}]

≥ inf
PV ∈Uδ(P̂V )

EU [{U − b(U)}× PV (s∗(V ) ≤ b (U) |U) I {U ≥ r}] ,

for b (·) ∈ IC ([r, u]) and b(r) ≥ r.

Note that in Definition 1, the bidders try to robustify against a strong adversary, which is
allowed to vary his/her distributions for every single auction; while in Definition 2, the adversary
is only able to choose the same distribution among all different ads opportunities.

Below we consider a new type of distance which depends on s and b.

Ds,b
p (P,Q) :=

(∫ ∞
0
|P (s(V1) ≤ b(x))−Q (s(V2) ≤ b(x))|p dx

)1/p

. (3)

At the first glance, the distance in (3) seems complicated, but in the equilibrium, b(·) = s(·),
and Ds,b

p (·, ·) reduces to the distance Dp(·, ·). In this case, it is hard to solve for a closed-form,
but we give an asymptotic expansion in Theorem 2, when δ → 0.

Theorem 2. We assume the uncertainty set is constructed by the distance Ds,b
p (P,Q) with

p > 1 and let 1/q + 1/p = 1. Under Assumptions 2 and 3, a symmetric GDRNE of first-price

auction with Ds,b
p (·, ·) distance uncertainty sets is

b∗GDRNE (u) = b0(u) + b1(u)δ + o(δ), for u ≥ r,

where

b0(u) = u−
∫ u
r F̂V (x) dx

F̂V (u)
,

b1(u) =

∫ u

r
h(x) exp

(
−
∫ u

x

f̂V (t)

F̂V (t)
dt

)
dx, and

h(u) =
b′0(u) ((u− b0(u))fU (u))q−1

F̂V (u)
(∫ u

r ((x− b0(x))fU (x))q dx
)1−1/q

,

when δ → 0.

Sketch of Proof. For any strictly increasing and continuous functions, b(·), s (·), we have

inf
P :Ds,bp (P,P̂V )≤δ

EU [{U − b(U)}× P (s(V ) ≤ b(U)|U) I {U ≥ r}]

= EU

[
{U − b(U)} P̂V (s(V1) ≤ b(U)|U) I {U ≥ r}

]
(4)

+ inf
P :Ds,bp (P,P̂V )≤δ

{∫ u

r
(u− b(u))fU (u) (P (s(V ) ≤ b(u)) −P̂V (s(V ) ≤ b(u)

)
du
}
. (5)
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By the Hölder inequality, the term (5) is bounded by∫ u

r
(u− b(u))fU (u)

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)
du

≥ −
(∫ u

r
((u− b(u))fU (u))q du

)1/q

×
(∫ u

r

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)p
du

)1/p

≥ −δ
(∫ u

r
((u− b(u))fU (u))q du

)1/q

. (6)

where 1/p + 1/q = 1. We claim the bound is tight. By Theorem 1 in Chapter 7.4 and Lemma
1 in Chapter 7.5 of [18], we have the optimizer must satisfy the condition:

(u− b(u))
f̂V
(
s−1 (b(u))

)
s′(s−1 (b(u)))

− P̂V (s(V ) ≤ b(u)) + δ
((u− b(u))fU (u))q−1(∫ u

r ((u− b(u))fU (u))q du
)1−1/q

= 0. (7)

In the symmetric GDRNE, b∗(·) solves the differential equation:

(u− b(u))
f̂V (u)

b′(u)
− F̂V (u) (8)

+δ
((u− b(u))fU (u))q−1(∫ u

r ((u− b(u))fU (u))q du
)1−1/q

= 0. (9)

Let b∗(u) = b0(u)+δb1(u)+o(δ). When δ = 0, it reduces to the non-ambiguity Nash equilibrium,
i.e.,

b0(u) = u−
∫ u
r F̂V (x)dx

F̂V (u)
and

b′0(u) =
f̂V (u)

∫ u
r F̂V (x)dx

F̂V (u)2
=
f̂V (u)

F̂V (u)
(u− b0(u)) .

Then, the two terms in (8) becomes,

(u− b∗(u))
f̂V (u)

(b∗(u))′
− F̂V (u) = − δ

b′0(u)

(
F̂V (u)b′1(u) + f̂V (u)b1(u)

)
+ o(δ)

Therefore, after ignoring the higher order, (9) becomes a differential equation

b′1(u) +
f̂V (u)

F̂V (u)
b1(u) =

b′0(u) ((u− b0(u))fU (u))q−1

F̂V (u)
(∫ u

r ((u− b0(u))fU (u))q du
)1−1/q

.

By solving the differential equation, we obtain the expression for b1(u). Finally, we verify that
b∗(·) is indeed the GDRNE, when δ → 0. �

The full proof of Theorem 2 is in Appendix A.2.

Remark 2. b1(u) > 0 for u ≥ r. Thus, Robustification pushes the bid higher.
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4. Connections with Existing Literature

This work is closely related to many fields in statistics, machine learning, optimization,
and economics. We briefly discuss a few of them with their respective focuses and their key
differences with us.

Standard transfer learning concerns the setting that a model receives data from one source
distribution and are tested on a known target distribution (labeled or unlabeled): the typical
approach is to use importance sampling to reweight the source distribution towards the target
distribution; see, for example, [25, 27, 14, 3, 21, 31]. In particular, [8] uses optimal transportation
to operate the alignment from the source distribution to the target distribution.

However, as mentioned in the bidding problem, we may not be able to access any knowledge
about the target distribution. In this case, the aforementioned methods cannot be applied.
Furthermore, even if the target domain distribution is accessible, the reweighting procedure
could fail due to large selection bias [7]. Therefore, [30, 11, 10] use a distributionally robust
optimization approach to minimize the worst-case loss. These methods are similar to ours in
the sense that we also use a minimax formulation in the DRO framework. Nevertheless, there
is no literature focusing on the scenario in which other agents could behave strategically in the
domain adaptation setting.

We also note that the strategic domain adaptation theory has a close connection with robust
game theory under ambiguity in the economics and operations research literature. Mechanism
design problems under ambiguity are studied in [2, 5, 6, 28, 15]. Furthermore, [1, 24, 16, 17]
propose the same notions as our distributionally robust Nash equilibrium (Definition 1), and
[23, 16, 17] study the ambiguity-aversed agents’ behaviors in the first-price auction. Specifically,
as we mentioned in Remark 1, [16, 17] give results similar to those in Theorem 1 under slightly
different assumptions. However, we believe the concept of global distributionally robust Nash
equilibrium (Definition 2) is new to the literature, and this paper is the first one that applies
the techniques in robust game theory to domain adaption settings.

5. Examples and Visual Illustration

In this section, we compute the explicit equilibrium expressions for some sample distributions.

Example 1 (Uniform Distribution). Let unif ([a, b]) denote the uniform distribution on the

interval [a, b]. Let U ∼ unif ([a, b]) and V̂ ∼ unif ([a, b]). Then, by direct calculation, the Nash
equilibrium is

b∗NE(u) =
u2 − 2ar + r2

2(u− a)
, for u ∈ [r, b];

the distributionally robust Nash equilibrium is

b∗DRNE (u) =
u2 − 2u0 max(r, u0) + max(r, u0)2

2(u− u0)
,

for u ∈ (max(r, u0), b], where

u0 = a+ (p+ 1)1/(p+1) [(b− a)δ]p/(p+1) ,
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and for u ∈ [r,max(r, u0)), b∗DRNE cannot be determined; then, for p = q = 2, the global
distributionally robust Nash equilibrium is

b∗GDRNE (u) =
u2 − 2ar + r2

2(u− a)
+

√
3(b− a)3

4
√
b+ 3r − 4a(u− a)3(b− r)3/2

×(
(u− a)4 − (r − a)4 + 4(r − a)2(u− a)2 log

(
r − a
u− a

))
δ + o(δ), for u ∈ [r, b].

Example 1 shows that for r > u0,

b∗DRNE (u) = b∗NE(u) +
(u0 − a)(u− r)2

2(u− a)(u− u0)
= b∗NE(u) +O

(
δp/(p+1)

)
, and

b∗GDRNE (u) = b∗NE (u) +O(δ),

which indicates that b∗DRNE (u) is overly conservative and pushes the bid higher than b∗GDRNE (u) .

Example 2 (Maximum of N uniform random variables). We consider U ∼ unif ([a, b]) and

V̂ ∼ max{U1, U2, . . . , UN}, where Ui
iid∼ unif ([a, b]), for i = 1, 2, . . . , N . In this example, we

have

b∗NE(u) =
a+Nu

1 +N
+

(r − a)n+1

(1 +N) (u− a)n
, for u ∈ [r, b].

and we numerically solve DRNE and GDRNE. In Figure 1, we plot NE, DRNE, and GDRNE
for p = 2, a = 1, n = 10, r = 3. For DRNE, if u0 > r, we plot bDRNE(u) only for [u0, b], since
b∗DRNE(u) for u < u0 cannot be uniquely determined. We test the dependence on δ and N of
these three equilibrium concepts.
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Figure 1: NE, DRNE, and GDRNE for different N and δ, where the nominal distribution is the
maximum of N i.i.d. uniform random variables. Left: fixed δ = 0.1 and N ∈ {2, 3, 4}. Right:
fixed N = 3 and δ ∈ {0.2, 0.3, 0.4}.
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Example 3 (Maximum of N scaled beta random variables). We consider U ∼ unif ([a, b]) and

V̂ ∼ max{B1, B2, . . . , BN}, where {Bi}Ni=1 are i.i.d. samples from the scaled beta distribution

Betaa,b (α, β), where

Betaa,b (α, β)
d
= a+ (b− a)Beta (α, β) .

In this example, we numerically compute NE, DRNE and GDRNE, and plot them for p = 2, a =
1, n = 10, r = 3, α = 2, β = 5 in Figure 2. We do for DRNE the same thing that we do in
Example 2. We test the dependence on δ and N of these three equilibrium concepts.
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Figure 2: NE, DRNE, and GDRNE for different N and δ, where the nominal distribution is
the maximum of N i.i.d. scaled beta random variables. Left: fixed δ = 0.1 and N ∈ {2, 3, 4}.
Right: fixed N = 3 and δ ∈ {0.2, 0.3, 0.4}.

Figures 1 and 2 show that b∗DRNE(u) > b∗GDRNE(u) > b∗NE(u), and b∗DRNE(u) is far higher than
b∗GDRNE(u), which indicates that bidding according to DRNE may lead to poor performance
for the tasks in the target domain. Furthermore, another thing that should be noted is that
b∗DRNE(u) can only be computed for u > u0. Therefore, there is no clear guidance on how to
bid for u < u0, and this issue becomes more severe when the competing landscape is more
competitive, i.e., other bidder’s values are high or there is a large number of bidders; see, for
example, N = 4 case in top-right plot in Figure 1, where u0 is larger than 6. In fact, the practice
is usually very competitive: there are many bidders participating in ad exchanges, and winning
only 1%− 5% of the auctions is a typical scenario faced by demand-side platforms. Therefore,
DRNE may not be a useful concept here. On the other hand, GDRNE provides us a robust
bidding policy for all u > r, which is easy-to-use for practitioners.

See Section Appendix B for the full set of plots.

6. Discussions on Heterogeneous Agents

The previous sections hinge on the homogeneous-agent assumption, which may not be true
in practice. However, in this section, we show that Assumption 2 is approximately true and
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Theorem 1 can also be applied in practice when the winning probability of each agent is relatively
small.

We denote V−i is the highest competing value, i.e.,

V−i = max{Uj : j 6= i and j = 1, 2, . . . , N + 1}.
We suppose that the winner probability of each agent is bounded by α, i.e., P (Ui > V−i) < α.
In practice, α is usually small. Then, for any i 6= j, we have

P (V−i 6= V−j) > 1− P (Ui > V−i)− P (Uj > V−j) > 1− 2α.

Therefore, when α is smaller than 5% (a typical scenerio in practice), the highest competing
value each agent faced are usually more than 90% similar. We can thus safely say Assumption
2 is approximately true and apply Theorem 1 directly.

However, for GDRNE, the results of Theorem 2 may not be a good approximation in the
heterogeneous setting because the equilibrium depends on each agent’s own value distribution,
which may vary drastically. Therefore, solving GDRNE (approximately) in the heterogeneous
remains an open problem.

7. Conclusions and Future Work

We believe that robust transfer learning with strategic behavior introduced in this work is
a new area with many research opportunities. A specific setting which, we believe, connects
traditional transfer learning questions and strategic behavior involves information dissemination
across different social networks platforms in which different agents wish to transfer knowledge
with the goal of achieving competing effects (e.g., a group of agents apply transfer learning from
network A to network B with the objective of maximizing competing goals, even involving the
network manager). We expect that ideas such as our GDRNE will be particularly useful in
these and other types of settings.
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Appendix A. Proofs of Main Results

Appendix A.1. Proof of Theorem 1.

Proof of Theorem 1. The optimal bids satisfy b ≤ u. Since s(·) is strictly increasing and contin-
uous, we have

inf
P∈Uδ(P̂V )

(u− b)P (s (V ) ≤ b)

= (u− b) inf
P∈Uδ(P̂V )

P
(
V ≤ s−1 (b)

)
= (u− b) P̂V

(
V ≤ s−1 (b)− λs−1(b)

)
.

Consider the measure with the CDF

F̂ δV (u) =

{
0

F̂V (−λu + u)
u ≤ u0

u > u0
.

Then, by Lemma 1, we have

inf
P∈Uδ(P̂V )

(u− b)P (s (V ) ≤ b) = (u− b) F̂ δV (s−1 (b)).

When u > u0, it is just the Nash equilibrium with belief F̂ δV (·) . We claim F̂ δV (u) is strictly
increasing with continuous density over [u0, u]. Since λu is the unique solution of

δp =

∫ u

u−λu
(F̂V (t)− F̂V (u− λu))pdt, (A.1)

we have u−λu is strictly increasing with respect to u.Then, by differenting both sides of equation
(A.1), we have

0 = (F̂V (t)− F̂V (u− λu) + p

(
1− ∂λu

∂u

)∫ u

u−λu
(F̂V (t)− F̂V (u− λu))p−1dt,

which means ∂λu
∂u is continuous. Therefore, we have

∂F̂ δV (u)

∂u
= f̂V (−λu + u)

(
1 +

∂λu
∂u

)
,

is continuous. Then, by [22], we have the symmetric DRNE is that

b∗ (u) = u−
∫ u

r
F̂ δV (x) dx/F̂ δV (u) for u ≥ max(r, u0).

Then, for u ≤ u0 and for any b ≤ u, we have (s∗)−1 (b) ≤ u0 and thus F̂ δV ((s∗)−1 (b)) = 0.
Therefore, any strictly increasing and continuous function with

b∗ (u) = u−
∫ u

max(r,u0)
F̂ δV (x) dx/F̂ δV (u) for u ≥ max(r, u0),

is a symmetric DRNE. �
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Appendix A.2. Proof of Theorem 2. For any strictly increasing and continuous functions,
b(·), s (·), we have

inf
P :Ds,bp (P,P̂V )≤δ

EU [{U − b(U)}P (s(V ) ≤ b(U)|U) I {U ≥ r}]

= EU

[
{U − b(U)} P̂V (s(V1) ≤ b(U)|U) I {U ≥ r}

]
+ (A.2)

inf
P :Ds,bp (P,P̂V )≤δ

{∫ u

r
(u− b(u))fU (u)

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)
du

}
. (A.3)

From the optimization problem, we have b (ū) > s(ū) cannot be the optimizer. Thus, we impose
the condition b (ū) ≤ s(ū). Further, when u = r, the optimal bids satisfy b(r) = s(r) = r. By
the Hölder inequality, the term (A.3) is bounded by∫ u

r
(u− b(u))fU (u)

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)
du

≥ −
(∫ u

r
((u− b(u))fU (u))q du

)1/q (∫ u

r

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)p
du

)1/p

≥ −δ
(∫ u

r
((u− b(u))fU (u))q du

)1/q

. (A.4)

where 1/p+ 1/q = 1. We claim the bound is tight. We can pick a sequence of measure Qε, such
as

P̂V
(
V ≤ s−1 (b(u))

)
−Qε

(
V ≤ s−1 (b(u))

)
= t ((u− b(u))fU (u))q/p , for u ∈ [r, u],

P̂V
(
V ≤ s−1 (b(u))

)
= Qε

(
V ≤ s−1 (b(u))

)
when u ≥ u+ ε, and

P̂V (V ≤ u) = Qε (V ≤ u) , when u ∈ [u, r].

with

t

(∫ u

r
((u− b(u))fU (u))q du

)1/p

= δ.

Since b(r) = s(r) = r and b (ū) ≤ s(ū), the inversion s−1 (b(u)) is always valid and gives a unique
value. Furthermore, There exists δ0 > 0, such that for 0 < δ < δ0, Qε is a valid probability
measure, since s(·), b(·) are strictly increasing and continuous, and fU (u) has bounded derivative.
Finally, notice that

inf
ε>0
−
(∫ u

r
((u− b(u))fU (u))q du

)1/q (∫ u

r

(
P (s(V ) ≤ b(u))− P̂V (s(V ) ≤ b(u)

)p
du

)1/p

= −δ
(∫ u

r
((u− b(u))fU (u))q du

)1/q

,

which completes the tightness of the bound (A.4).

By Theorem 1 in Chapter 7.4 and Lemma 1 in Chapter 7.5 of [18], we have the optimizer
must satisfy the condition:

(u− b(u))
f̂V
(
s−1 (b(u))

)
s′(s−1 (b(u)))

− P̂V (s(V ) ≤ b(u)) + δ
((u− b(u))fU (u))q−1(∫ u

r ((u− b(u))fU (u))q du
)1−1/q

= 0. (A.5)
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In the symmetric GDRNE, b∗(·) solves the differential equation:

(u− b(u))
f̂V (u)

b′(u)
− F̂V (u) + δ

((u− b(u))fU (u))q−1(∫ u
r ((u− b(u))fU (u))q du

)1−1/q
= 0. (A.6)

Let b∗(u) = b0(u)+δb1(u)+o(δ). When δ = 0, it reduces to the non-ambiguity Nash equilibrium,
i.e.,

b0(u) = u−
∫ u
r F̂V (x)dx

F̂V (u)
and b′0(u) =

f̂V (u)
∫ u
r F̂V (x)dx

F̂V (u)2
=
f̂V (u)

F̂V (u)
(u− b0(u)) .

Then, the first two terms of (A.6) becomes,

(u− b∗(u))
f̂V (u)

(b∗(u))′
− F̂V (u)

= (u− b0(u)− δb1(u))
f̂V (u)

b′0(u) + δb′1(u)
− F̂V (u) + o(δ)

= (u− b0(u)− δb1(u))

(
f̂V (u)

b′0(u)
− δb′1(u)f̂V (u)

b′0(u)2

)
− F̂V (u) + o(δ)

= −δb1(u)
f̂V (u)

b′0(u)
− δb′1(u)F̂V (u)

b′0(u)
+ o(δ)

= − δ

b′0(u)

(
F̂V (u)b′1(u) + f̂V (u)b1(u)

)
+ o(δ)

Therefore, after ignoring the higher order, (A.6) becomes a differential equation

b′1(u) +
f̂V (u)

F̂V (u)
b1(u) =

b′0(u) ((u− b0(u))fU (u))q−1

F̂V (u)
(∫ u

r ((u− b0(u))fU (u))q du
)1−1/q

.

Denote

h(u) =
b′0(u) ((u− b0(u))fU (u))q−1

F̂V (u)
(∫ u

r ((u− b0(u))fU (u))q du
)1−1/q

With b1(r) = 0, the solution is that

b1(u) =

∫ u

r
h(x) exp

(
−
∫ u

x

f̂V (t)

F̂V (t)
dt

)
dx. (A.7)

We remain to show b∗(·) is indeed the GDRNE, when δ → 0. Namely b∗(·) is an optimizer of
the problem

max
b(·)∈IC([r,u])

EU

[
{U − b(U)} P̂V (s∗(V1) ≤ b(U)|U) I {U ≥ r}

]
− δ

(∫ u

r
((u− b(u))fU (u))q du

)1/q

, (A.8)
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where s∗(u) = s0(u) + δs1(u) + o(δ) and s0(u) = b0(u), s1(u) = b1(u). Let denote functionals

Ψ (b (·)) = EU

[
{U − b(U)} P̂V (s∗(V1) ≤ b(U)|U) I {U ≥ r}

]
− δ

(∫ u

r
((u− b(u))fU (u))q du

)1/q

,

Ψ1 (b (·)) = EU

[
{U − b(U)} P̂V (s∗(V1) ≤ b(U)|U) I {U ≥ r}

]
,

Ψ2 (b (·)) =

(∫ u

r
((u− b(u))fU (u))q du

)1/q

.

First, consider Ψ1 (b (·)) and we have

∂Ψ1 (b (·))
∂b (u)

= (u− b(u))
f̂V ((s∗)−1 (b(u))

(s∗)′ ((s∗)−1 (b(u)))
− P̂V (s∗(V1) ≤ b(u))

= (u− b(u))

 f̂V ((s∗)−1 (b(u))

s′0

(
(s∗)−1 (b(u))

) − δ f̂V ((s∗)−1 (b(u)) (s1)′ ((s∗)−1 (b(u)))

s′0

(
(s∗)−1 (b(u))

)2


− P̂V (s∗(V1) ≤ b(u)) + o(δ)

= (u− b(u))

 F̂V ((s∗)−1 (b(u))

(s∗)−1 (b(u))− s0((s∗)−1 (b(u)))
− δ f̂V ((s∗)−1 (b(u)) (s1)′ ((s∗)−1 (b(u)))

s′0

(
(s∗)−1 (b(u))

)2


− P̂V (s∗(V1) ≤ b(u))) + o(δ).

Notice that

(s∗)−1 (b(u))− s0((s∗)−1 (b(u)))

= (s∗)−1 (b(u))− s∗((s∗)−1 (b(u))) + δs1((s∗)−1 (b(u))) + o(δ)

= (s∗)−1 (b(u))− b(u) + δs1(u)((s∗)−1 (b(u))) + o(δ).

After simplification, we have

∂Ψ1 (b (·))
∂b (u)

= F̂V (s∗)−1 (b(u))

(
u− (s∗)−1 (b(u))

(s∗)−1 (b(u))− b(u)

)
+

− δ(u− b(u))

 F̂V ((s∗)−1 (b(u))s1((s∗)−1 (b(u)))(
(s∗)−1 (b(u))− b(u)

)2 +
f̂V ((s∗)−1 (b(u)) (s1)′ ((s∗)−1 (b(u)))

s′0

(
(s∗)−1 (b(u))

)2


+ o(δ).
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When δ = 0, s∗(u) = s0(u), due to (s∗)−1 (b(u)) − b(u) > 0 and the monotonicity of s∗ (u) we
have

F̂V (s∗)−1 (b(u))

(
u− (s∗)−1 (b(u))

(s∗)−1 (b(u))− b(u)

)
> 0, when b(u) < s∗(u), and

F̂V (s∗)−1 (b(u))

(
u− (s∗)−1 (b(u))

(s∗)−1 (b(u))− b(u)

)
< 0, when b(u) > s∗(u).

Therefore, b(u) = b0(u) = s0(u) is the unique maximizer.

For δ > 0, To emphasis the dependence on δ, we explicitly write bδ(u) = b(u) and let b̂δ(·) be
an optimizer of problem (A.8). By directly examining the optimization problem (A.8), we have

b̂δ(u) ≥ s0(u). We claim b̂(u)→ b0(u), when δ → 0. If not, since b̂δ(u) ∈ [r, u], we can construct

a sequence
{
b̂δi(u)

}∞
i=1

such as

b̂δi(u)→ b̌(u) 6= b0(u).

Then,

∂Ψ1 (b (·))
∂b̂δi(u)

→ F̂V (b0)−1 (b̌(u))

(
u− (b0)−1 (b̌(u)

)
(b0)−1 (b̌(u)

)
− b̌(u)

)
6= 0,

which means there exists δi > 0, such as ∂Ψ1(b(·))
∂b̂δi (u)

6= 0. It is a contradiction.

Now, for any bδ(u) = b0(u) + o(1), we have

∂Ψ1 (b (·))
∂bδ (u)

= F̂V (s∗)−1 (bδ(u))

(
u− (s∗)−1 (bδ(u))

(s∗)−1 (bδ(u))− bδ(u)

)

− δ

s′0 (u)

(
f̂V (u)s1(u) + F̂V (t)s′1(u)

)
+ o(δ).

Therefore, we have

∂Ψ1 (b (·))
∂bδ (u)

= F̂V (s∗)−1 (bδ(u))

(
u− (s∗)−1 (bδ(u))

(s∗)−1 (bδ(u))− bδ(u)

)
+ o(δ)

= F̂V (s∗)−1 (bδ(u))

u− (s∗)−1 (b∗(u))− bδ(u)−b∗(u)

(s∗)′(b∗(u))

(s∗)−1 (bδ(u))− bδ(u)

+ o(bδ(u)− b∗(u)) + o(δ)

= − F̂V (s∗)−1 (bδ(u))(
(s∗)−1 (bδ(u))− bδ(u)

)
(s∗)′ (b∗(u))

(bδ(u)− b∗(u)) + o(bδ(u)− b∗(u)) + o(δ).

For ε > 0, there exists δ0 > 0, such that for 0 < δ < δ0, we have

∂Ψ1 (b (·))
∂bδ (u)

> 0, when bδ(u) < b∗(u)− εδ, and

∂Ψ1 (b (·))
∂bδ (u)

< 0, when bδ(u) > b∗(u) + εδ.

Therefore, we have the optimizer limδ→0
1
δ

(
b̂δ(u)− b∗(u)

)
= 0, which completes the proof.
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Appendix B. Numerical Examples

Appendix B.1. Maximum of N Uniform Random Variables. We consider the same pa-
rameters in Example 2. Here, we provide a full grid of plots for (N × δ) ∈ {1, 2, 3, 4} ×
{0.1, 0.2, 0.3, 0.4}.
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Figure 3: NE, DRNE, and GDRNE for different N ∈ {1, 2, 3, 4} and δ ∈ {0.1, 0.2, 0.3, 0.4},
where the nominal distribution is the maximum of N i.i.d. uniform random variables.

Appendix B.2. Maximum of N Scaled Beta Random Variables. We consider the same
parameters in Example 3. Here, we provide a full grid of plots for (N × δ) ∈ {1, 2, 3, 4} ×
{0.1, 0.2, 0.3, 0.4}.
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Figure 4: NE, DRNE, and GDRNE for different N ∈ {1, 2, 3, 4} and δ ∈ {0.1, 0.2, 0.3, 0.4},
where the nominal distribution is the maximum of N i.i.d. scaled beta random variables.
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