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A collection of triplets of con-
text, action and rewards in an
environment P,.

We aim to deploy a robust pol-
icy in unknown environments
P}, which are similar but slight-
ly different from the previous
environment.
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Motivation: distributional shifts in batch contextual bandit
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@ Incomplete (bandit-type) data:
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Motivation: distributional shifts in batch contextual bandit

Main challenges g

@ Incomplete (bandit-type) data:

:0’ ¢ HINENEEEN
.“ 2 2V 2 x x x ?

@ Distributional shifts: covariate shift and concept drift.

niansi@stanford.edu (Stanford) DRO Batch Bandit October 24, 2021

4 /28



Distributionally robust formulation

Setting SEmEl

e Context: X € X; Actions: A€ A= {a',2%,...,a%}; Rewards:
(Y(al)v Y(32)7 MR Y(ad)) € Hjc'!:l J}J
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Distributionally robust formulation

Setting SEmEl

e Context: X € X; Actions: A€ A= {a',2%,...,a%}; Rewards:
(Y(a%), Y(a?),..., Y(a%) € [TL, V.

e Batch bandit data: {(X;, A;, Yi(A;))}", where
(X:, Yi(al), Yi(a?), ..., Yi(a®)) "% Pg, and A; ~ mo(- | X;) is known.
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Distributionally robust formulation

Setting SEmEl

e Context: X € X; Actions: A€ A= {a',2%,...,a%}; Rewards:
(Y(a%), Y(a?),..., Y(a%) € [TL, V.

e Batch bandit data: {(X;, A;, Yi(A;))}", where
(X:, Yi(al), Yi(a?), ..., Yi(a®)) "% Pg, and A; ~ mo(- | X;) is known.

@ Goal: learn a robust policy that performs well in the presence of unknown
distributional shifts.
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Distributionally robust formulation

Assumptions: standard assumptions? SEmEl

Assumption (Standard assumptions)

1. Unconfoundedness: (Y(a'), Y(a%),..., Y (a%)) is independent with A conditional
on X, ie.,
(Y(a'),Y(a%),...,Y(a")) IL A | X.
2. Overlap: There exists some n > 0, mo(a | x) > n, V(x,a) € X x A.
3. Bounded reward support: 0 < Y(a') < M fori=1,2,....d.

1This assumption is standard and commonly adopted in both the causal inference
literature (Rosenbaum and Rubin [1983], Imbens [2004], Imbens and Rubin [2015]) and the
policy learning literature (Zhang et al. [2012], Zhao et al. [2012], Kitagawa and Tetenov
[2018], Swaminathan and Joachims [2015], Zhou et al. [2017]).
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Distributionally robust formulation

Assumptions: positive densities/probabilities SEmEl
Assumption (Positive densities/probabilities)
1. Continuous case: forany i =1,2,...,d, Y(a')|X has a conditional density

fi(vi|x), and fi(yi|x) > b > 0 over the interval [0, M] for any x € X.

2. Discrete case: forany i=1,2,...,d, Y(a') supported on a finite set D, and
Po(Y(a') = v|X) > b >0 for any v € D.

1.4 0.5}
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(l)g — Y(@@HIX 03t m Y(a;)IX
0.6 — Y(@)IX o2l o 1 n Y(@)IX
ol T b 0.1} et B b
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(a) Continuous probability distribution (b) Discrete probability distribution
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Distributionally robust formulation

Distributionally robust formulation SEmEl

@ How to model distributional shifts?
o Kullback-Leibler divergence: KL(P||Po) £ [ 14 1, log (3—,‘,’0) dp.
=1 Y
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o Uncertainty set: Up,(0) = {P | KL(P||Po) < d}.
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Distributionally robust formulation

Distributionally robust formulation SEmEl

@ How to model distributional shifts?
o Kullback-Leibler divergence: KL(P||Po) £ [ 14 1, log (3—,‘,’0) dp.
=1 Y

o Uncertainty set: Up,(0) = {P | KL(P||Po) < d}.

@ Distributionally robust value function (population level):

Qoro(T) £ Ep[Y (7 (X))]-

inf
PGMPO(E)
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Distributionally robust formulation

Distributionally robust formulation SEmEl

@ How to model distributional shifts?
© Kullback-Leibler divergence: KL(P||Po) £ [y, s ), log (51—,':0) dp.
o Uncertainty set: Up,(0) = {P | KL(P||Po) < d}.
@ Distributionally robust value function (population level):
Qoro(m) = _inf  Ep[Y(m(X))].

PGZ/{pO((;)

(&

Vv
Infinite dimensional optimization.
Bandit observations for Pyg.
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Distributionally robust formulation

Tractable reformulation and policy evaluation SEmEl

@ Strong duality? for the distributionally robust value function:
Qpro(T) = Pewpi(é) Ep[Y(7(X))]

= sup {—alog Ep, [exp(—Y(7(X))/a)] — ad}

a>0

2H
u and Hong [2013]
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Distributionally robust formulation

Tractable reformulation and policy evaluation SEmEl

@ Strong duality? for the distributionally robust value function:
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[ [SPYANO=A] )

where Py * my denotes the product distribution on the space X' x Hj‘.jzl Y x A.
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Distributionally robust formulation

Tractable reformulation and policy evaluation SEmEl

@ Strong duality? for the distributionally robust value function:
Qpro(T) = Pellxrl]pi((;) Ep[Y(7(X))]

= sup {—alog Ep, [exp(—Y(7(X))/a)] — ad}

s ot SO0 ) )

where Py * my denotes the product distribution on the space X' x Hj‘.jzl Y x A.

o Finite-sample estimate: Qpro(m) = Sup,>o{—alog W, (, ) — ad}, where

1 ep(=YiA) @) r(X) = A}
W, (7, a) = n Z wo(Ar | X)) :

i=1

2H
u and Hong [2013]
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Distributionally robust formulation

Tractable reformulation and policy evaluation SEmEl

@ Strong duality? for the distributionally robust value function:
Qpro(T) = Pellxrl]pi((;) Ep[Y(7(X))]
= sup {—alog Ep, [exp(—Y(7(X))/a)] — ad}

g { ot [PV REEA] r)

= sup {—a log Epgir,

a>0

where Py * my denotes the product distribution on the space X' x Hj‘.jzl Y x A.

o Finite-sample estimate: Qpro(m) = Sup,>o{—alog W, (7, o) — ad}, where

Wn(ﬂ', a) =

exp(—Yi(Aj)/a){n(X;) = Ai}
T 11{;;(“/;}2 WA X

TV
More stable

2H
u and Hong [2013]
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Distributionally robust formulation

Central limit theorem

Theorem

Under assumptions mentioned earlier, for any policy m € 1, we have
Vn (QDRO(W) - QDRO(W)) = N (0,0%(a")),
where o* is the optimal dual variable, defined by

o = argmax {—alog Ep, [exp(— Y (7(X))/a)] — ad},

a>0

and o%(a) =

o? 1

Elop (- Y (2 00)/ B | 7 (rxyx) (&P (7Y ((X))/a) = Elexp (=Y (x(X))/e)])
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Distributionally robust policy learning

A learning algorithm g

@ How to find a good policy: arg max,.q Qpro(7)?
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Distributionally robust policy learning

A learning algorithm SEmEl

@ How to find a good policy: arg max,.q Qpro(7)?
@ Given a policy class I1, learn a distributionally robust policy:
pro = arg FTI]IaX Qoro(T)
TE

= argmaxsup{—alog V\A/,,(ﬂ, a) —ad}
rel  a>0
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Distributionally robust policy learning

A learning algorithm SEmEl

@ How to find a good policy: arg max,.q Qpro(7)?
@ Given a policy class I1, learn a distributionally robust policy:
pro = arg FTI]IaX Qoro(T)
TE
= argmaxsup{—alog VlA/,,(7r, a) —ad}

mell  a>0

@ Alternatively update 7 and «;
e Using Newton-Raphson method to update «; converge fast empirically.

niansi@stanford.edu (Stanford) DRO Batch Bandit October 24, 2021 11 /28



Distributionally robust policy learning

A learning algorithm SEmEl

@ How to find a good policy: arg max,.q Qpro(7)?
@ Given a policy class I1, learn a distributionally robust policy:
pro = arg ﬁljlaX Qoro(T)
TE
= argmaxsup{—alog VlA/,,(7r, a) —ad}

mell  a>0

@ Alternatively update 7 and «;
e Using Newton-Raphson method to update «; converge fast empirically.

@ How does Tipro perform?

Roro(Tpro) = max Qpro(7") — Qpro(fDRO)

= inf Ep[Y(7'(X))] — _inf Ep[Y(fprO(X))].
max peinf ) EPLY (XD = inf Ee[Y (oro(X))]
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Distributionally robust policy learning

Statistical performance guarantee SEmEl

Theorem

Under assumptions mentioned earlier, with probability at least 1 — ¢, we have in the
continuous case

Rpro(#pro) < 1_377\[ ((\/_+ 1) (M) + /2log (;) + C) :

and in the discrete case

Rpro(#pro) < [;7—\/\/,[ <24(\/_+ 1) ( )+ 48+/|D| log (2) + /2 log (§>> 7

where k(") (M) represents the complexity of the policy class 1N, and 1 > 0 is a lower
bound for the propensity score (collection policy) my(a, x) mentioned in the previous
assumption.

v
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Distributionally robust policy learning

Statistical performance guarantee SEmEl

Theorem

Under assumptions mentioned earlier, with probability at least 1 — ¢, we have in the
continuous case

Rpro(#pro) < 1_377\/_ ((\/_+ 1) (M) + 4/ 2log (g) + C) :

and in the discrete case

Rpro(#pro) < % (24(\/_+ 1) ( )+ 48+/|D| log (2) + /2 log (§>> 7

where k(") (M) represents the complexity of the policy class 1N, and 1 > 0 is a lower
bound for the propensity score (collection policy) my(a, x) mentioned in the previous
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Remarks on the complexity term (") (IT) i

Example
e Finite class: For a policy class gy, containing a finite number of policies, we

have £(" (Mgi,) < /log(|Mpin])-

@ Linear class: For X C RP, each policy 7w € Iy, is parameterized by a set of d
vectors © = {#, € R? : a € A} € RP*4  and the mapping 7 : X — A is defined as

Te(x) € argmax {6, x} .
acA

Then, we have x("(M;,) < Cy/dplog(d) log(dp).

v

@ In general, k(" (IT) can be bounded by the VC dimension when d = 2, or the graph
dimension when d > 2.
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Numerical results

Simulation, real data experiments, and the selection of ¢ J
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Numerical results

Simulation study: benchmark SEmEl

Benchmark: let T denote the class of all measurable mappings from contexts X’ to the
action set A.

@ Bayes policy 7*:
7" € argmax Ep[Y(7(X))], and

Trel_To

@ Bayes DRO policy Thro:

Thro € argmax _inf  Ep[Y(7(X))].
ren Peup0(5)
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Numerical results

Simulation study: benchmark SEmEl

Benchmark: let T denote the class of all measurable mappings from contexts X’ to the

action set A.

@ Bayes policy 7*:
7" € argmax Ep[Y(7(X))], and

Trel_To

@ Bayes DRO policy Thro:

Thro € argmax _inf  Ep[Y(7(X))].
)

wel EUpy (s
@ Best policies, but may not in the policy class [1.

@ Not learnable, but theoretically easy to compute in the simulation environment,
because the policies are the best response for each X.
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Numerical results

Simulation study

@ 3 actions; 5-dimensional features, but only the first two matter:

Y(NIX ~ N(ui(X),07), fori=1,2,3.

where the conditional mean 1;(x) and conditional variance o; are chosen as

(x) = 0.2x(1) o1 =0.8,
(x)=1- \/ (x(1) 24+ (x(2) — 1), oy = 0.2,
3(x) =1—/(x(1) 24+ (x(2) + 1), o3 = 0.4.
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niansi@stanford.edu (Stanford)

October 24, 2021

Stanford

University

16 / 28



Numerical results

Simulation study

@ 3 actions; 5-dimensional features, but only the first two matter:

Y(NIX ~ N(ui(X),07), fori=1,2,3.

where the conditional mean 1;(x) and conditional variance o; are chosen as

(x) = 0.2x(1) o1 =0.8,
(x)=1- \/ (x(1) 24+ (x(2) — 1), oy = 0.2,
3(x) =1—/(x(1) 24+ (x(2) + 1), o3 = 0.4.

@ Bayes policy: T*(x) € argmax;_;  3{pi(x)};
S 02
DRO Bayes policy: Thro(x) € argmax;_; 53 {,u,-(x) - m}

DRO Batch Bandit
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Numerical results

Simulation study pranion

@ 3 actions; 5-dimensional features, but only the first two matter:
Y(NIX ~ N(ui(X),07), fori=1,2,3.

where the conditional mean 1;(x) and conditional variance o; are chosen as

(x) = 0.2x(1) o1 =0.8,
(x)=1- \/ (x(1) 24+ (x(2) — 1), oy = 0.2,
3(x) =1—/(x(1) 24+ (x(2) + 1), o3 = 0.4.

@ Bayes policy: T*(x) € argmax;_;  3{pi(x)};
DRO Bayes policy: Thro(x) € argmax;_; 53 {,u,-(x) — #ZRO)}
@ The linear policy class: = {7 (x) = argmax,c4 {6,x}:0,€ RP,ac A}.
DRO Batch Bandit
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Numerical results

Non-linear example with the linear policy class Fen

(b) non-DRO linear
policy;

(a) Bayes policy 7;

X2

(c) Bayes distribu-
tionally robust policy ¢

(d) distributionally
robust linear policy

ﬁ#](DRO TDRO-

o0 075 050 025 000 035 050 075 100 100 075 050 025 a0 035 050 075 100
X1 X1

Figure 1: o1 = 0.8(blue), 02 = 0.2(orange), o3 = 0.4(green).
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Numerical results

Non-linear example with the linear policy class

(a) Bayes policy 7*;

X2

(c) Bayes distribu-
tionally robust policy

X2

—%k
TDRO

+  Action1
Action 2
Action 3

o0 075 050 —025 000 025 050 075 100

Figure 1: o1 = 0.8(blue), 02 = 0.2(orange), o3 = 0.4(green).
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Numerical results

3Credit: Getty Images/iStockphoto
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Numerical results

Backgrounds R

@ Dataset Description:* 180002 data points on whether individuals voted in the 2006
primary election with their characteristics. There is 1 control and 4 treatments.

P N N
DO YOUR YOU ARE
CIVIC DUTY BEING STUDIED

(a) Civic (b) Monitored

- P N

YOU ARE YOUR AND
# BEING STUDIED [N NEIGHBORS’
4 OTING RECORD

(c) Self History (d) Neighbors

“Gerber et al. [2008]
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Numerical results

Actions penion

@ There are 5 actions (1 control with probability 5/9 and 4 treatments each with
probability 1/9).

e Nothing: No action is performed.

e Civic: A letter with "Do your civic duty” is mailed to the household before the
primary election.

e Monitored: A letter with "You are being studied” is mailed to the household
before the primary election.

o Self History: A letter with the past voting records of the voter's household is
mailed to the household before the primary election.

o Neighbors: A letter with the past voting records of this voter's household and
neighbors is mailed to the household.
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Numerical results

Actions penion

@ There are 5 actions (1 control with probability 5/9 and 4 treatments each with
probability 1/9).

e Nothing: No action is performed.

e Civic: A letter with "Do your civic duty” is mailed to the household before the
primary election.

e Monitored: A letter with "You are being studied” is mailed to the household
before the primary election.

o Self History: A letter with the past voting records of the voter's household is
mailed to the household before the primary election.

o Neighbors: A letter with the past voting records of this voter's household and
neighbors is mailed to the household.

@ Neighbors is dominant for the whole population. To make all actions comparable,
we minus an artificial cost of deploying each action:
Yi(a) = 1{voter i votes in 2006 under action a} — c,.
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Numerical results

Actions penion

@ There are 5 actions (1 control with probability 5/9 and 4 treatments each with
probability 1/9).

e Nothing: No action is performed.

e Civic: A letter with "Do your civic duty” is mailed to the household before the
primary election.

e Monitored: A letter with "You are being studied” is mailed to the household
before the primary election.

o Self History: A letter with the past voting records of the voter's household is
mailed to the household before the primary election.

o Neighbors: A letter with the past voting records of this voter's household and
neighbors is mailed to the household.

@ Neighbors is dominant for the whole population. To make all actions comparable,
we minus an artificial cost of deploying each action:
Yi(a) = 1{voter i votes in 2006 under action a} — c,.

@ Goal: learn a distributionally robust policy to maximize voting turnout.
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Numerical results

Training and evaluation procedure g

@ We use decision trees as the policy class.
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Numerical results

Training and evaluation procedure SEmEl

@ We use decision trees as the policy class.
@ We divide the training and test population based on the city (101 cities in the
dataset).
e Natural covariate shifts and concept drifts; e.g., the distribution of year of birth is
generally different across different cities.
o Leave-one-out to generate 101 pairs of training set and test set.
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Numerical results

Training and evaluation procedure

@ We use decision trees as the policy class.

@ We divide the training and test population based on the city (101 cities in the

dataset).

Stanford

University

e Natural covariate shifts and concept drifts; e.g., the distribution of year of birth is
generally different across different cities.
o Leave-one-out to generate 101 pairs of training set and test set.

mean std min | 5% quantile
Non-robust 0.0386 | 0.0991 | -0.2844 -0.1104
0 =0.11]0.0458 | 0.0989 | -0.2321 -0.1007
Robust 0 =0.2]0.0368 | 0.0895 | -0.2314 -0.0785
0 =0.3]0.0397 | 0.0864 | -0.2313 -0.0677
0 =0.40.0383 | 0.0863 | -0.2312 -0.0677

Table 1: Comparison of important statistics for 101 test results.
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Results for 6 = 0.1

74 .
[ non-robust decision tree
pro, 0 = 0.1

Density

R 0.1
Qipw ()

(a) Comparison of test performances between a
distributionally robust decision tree and a non-

=02 =0.1 0.0

=0.3

0.2 0.3 0.4 0.5
(b) Example of a distributionally robust tree

robust decision tree
22 /28
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Numerical results

How to select the uncertain size § in practice? SEmEl

Selecting 0 is more like a managerial decision rather than a scientific procedure.
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Numerical results

How to select the uncertain size ¢ in practice? Sy

University

Selecting 0 is more like a managerial decision rather than a scientific procedure.
@ Compute ¢ based on the training data:
o Estimate distributions of Y using any causal inference/machine learning methods.
o Randomly split training data into 20 cities (P?°) against 80 cities (P®?) 100 times.
o Estimate § based on KL(P?°||P®) = KL(PZ||PY) + Epio[KL(P%,O|X||P§,O|X)].

0.8

Empirical CDF
o
(=)}

0.2

0.4 0.6 0.8
4§
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How to select the uncertain size § in practice? SEmEl

Selecting 0 is more like a managerial decision rather than a scientific procedure.

@ Compute ¢ based on the training data:
o Estimate distributions of Y using any causal inference/machine learning methods.
o Randomly split training data into 20 cities (P?°) against 80 cities (P®?) 100 times.
o Estimate § based on KL(P?°||P®) = KL(PZ||PY) + Epio[KL(P%P|X||P§,O|X)].

@ Check the performance of A2, using different value functions.
e Robust policy does not compromise the non-robust value function.
e The performance is not sensitive to §, when § > 0.2.
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Extension to f-divergence uncertainty set

Extension to f-divergence uncertainty set g

@ Up to now, all of the results are for Kullback-Leibler divergence.

@ We can also generalize to f,-divergence.
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Extension to f-divergence uncertainty set

For fi(t) & % define f-divergence as

dP
Di(P||Po) £ / i (d—PO) dPy.
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Extension to f-divergence uncertainty set SEmEl

For fi(t) £ £—ktko1 define f-divergence as

k(k—1)
dP
Di(P||Po) é/fk (d—PO) dPy.

Under assumptions mentioned above, with probability at least 1 — €, we have in the
continuous case (similar result for the discrete case)

Theorem

max inf Ep[Y(7'(X))]— inf Ep[Y(fpro(X))]

m'en Peu,ﬁo(é) PeUF‘,‘O(J)

4c(9) () I 10e [ 2
SN ((f2+1) (M) + /21 g<€)+c),

A
where ¢, (6) = (1 + k(k — 1)8)V/k.
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The paper

Si N, Zhang F, Zhou Z, and Blanchet J. " Distributional Robust Batch Contextual
Bandits.” arXiv preprint arXiv:2006.05630 (2020). under review.
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