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Motivation: distributional shifts in batch contextual bandit

Motivation: distributional shifts in batch bandit

A collection of triplets of con-
text, action and rewards in an
environment Pa.

We aim to deploy a robust pol-
icy in unknown environments
Pb which are similar but slight-
ly different from the previous
environment.

Pb ≈ Pa
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Motivation: distributional shifts in batch contextual bandit

Main challenges

Incomplete (bandit-type) data:

Distributional shifts: covariate shift and concept drift.
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Distributionally robust formulation

Setting

Context: X ∈ X ; Actions: A ∈ A = {a1, a2, . . . , ad}; Rewards:
(Y (a1),Y (a2), . . . ,Y (ad)) ∈∏d

j=1 Yj .

Batch bandit data: {(Xi ,Ai ,Yi(Ai))}ni=1, where

(Xi ,Yi(a1),Yi(a2), . . . ,Yi(ad))
i .i .d .∼ P0, and Ai ∼ π0(· | Xi) is known.

Goal: learn a robust policy that performs well in the presence of unknown
distributional shifts.
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Distributionally robust formulation

Assumptions: standard assumptions1

Assumption (Standard assumptions)

1. Unconfoundedness: (Y (a1),Y (a2), . . . ,Y (ad)) is independent with A conditional
on X , i.e.,

(Y (a1),Y (a2), . . . ,Y (ad)) |= A | X .

2. Overlap: There exists some η > 0, π0(a | x) ≥ η, ∀(x , a) ∈ X ×A.

3. Bounded reward support: 0 ≤ Y (ai) ≤ M for i = 1, 2, . . . , d.

1This assumption is standard and commonly adopted in both the causal inference
literature (Rosenbaum and Rubin [1983], Imbens [2004], Imbens and Rubin [2015]) and the
policy learning literature (Zhang et al. [2012], Zhao et al. [2012], Kitagawa and Tetenov
[2018], Swaminathan and Joachims [2015], Zhou et al. [2017]).
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Distributionally robust formulation

Assumptions: positive densities/probabilities

Assumption (Positive densities/probabilities)

1. Continuous case: for any i = 1, 2, . . . , d , Y (ai)|X has a conditional density
fi(yi |x), and fi(yi |x) ≥ b > 0 over the interval [0,M] for any x ∈ X .

2. Discrete case: for any i = 1, 2, . . . , d , Y (ai) supported on a finite set D, and
P0(Y (ai) = v |X ) ≥ b > 0 for any v ∈ D.
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Distributionally robust formulation

Distributionally robust formulation

How to model distributional shifts?

Kullback-Leibler divergence: KL(P||P0) ,
∫
X×

∏d
j=1 Yj

log
(

dP
dP0

)
dP.

Uncertainty set: UP0(δ) = {P | KL(P||P0) ≤ δ}.
Distributionally robust value function (population level):
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Distributionally robust value function (population level):

QDRO(π) , inf
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EP[Y (π(X ))].︸ ︷︷ ︸
Infinite dimensional optimization.
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Distributionally robust formulation

Tractable reformulation and policy evaluation

Strong duality2 for the distributionally robust value function:

QDRO(π) = inf
P∈UP0(δ)

EP[Y (π(X ))]

= sup
α≥0
{−α logEP0 [exp(−Y (π(X ))/α)]− αδ}

= sup
α≥0

{
−α logEP0∗π0

[
exp(−Y (A)/α)1{π(X ) = A}

π0(A | X )

]
− αδ

}
.

where P0 ∗ π0 denotes the product distribution on the space X ×∏d
j=1 Yj ×A.

Finite-sample estimate: Q̂DRO(π) = supα≥0{−α log Ŵn(π, α)− αδ}, where

2Hu and Hong [2013]
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Distributionally robust formulation

Central limit theorem

Theorem

Under assumptions mentioned earlier, for any policy π ∈ Π, we have

√
n
(

Q̂DRO(π)− QDRO(π)
)
⇒ N

(
0, σ2(α∗)

)
,

where α∗ is the optimal dual variable, defined by

α∗ = arg max
α≥0

{−α logEP0 [exp(−Y (π(X ))/α)]− αδ} ,

and σ2(α) =

α2

E[exp (−Y (π(X ))/α)]2
E

[
1

π0 (π(X )|X )
(exp (−Y (π(X ))/α) − E [exp (−Y (π(X ))/α)])2

]
.
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Distributionally robust policy learning

A learning algorithm

How to find a good policy: arg maxπ∈Π QDRO(π)?

Given a policy class Π, learn a distributionally robust policy:

π̂DRO = arg max
π∈Π

Q̂DRO(π)

= arg max
π∈Π

sup
α≥0
{−α log Ŵn(π, α)− αδ}

Alternatively update π and α;

Using Newton-Raphson method to update α; converge fast empirically.

How does π̂DRO perform?

RDRO(π̂DRO) = max
π′∈Π

QDRO(π′)− QDRO(π̂DRO)

= max
π′∈Π

inf
P∈UP0

(δ)
EP[Y (π′(X ))]− inf

P∈UP0
(δ)

EP[Y (π̂DRO(X ))].
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{−α log Ŵn(π, α)− αδ}

Alternatively update π and α;

Using Newton-Raphson method to update α; converge fast empirically.

How does π̂DRO perform?

RDRO(π̂DRO) = max
π′∈Π

QDRO(π′)− QDRO(π̂DRO)

= max
π′∈Π

inf
P∈UP0

(δ)
EP[Y (π′(X ))]− inf

P∈UP0
(δ)

EP[Y (π̂DRO(X ))].

niansi@stanford.edu (Stanford) DRO Batch Bandit October 24, 2021 11 / 28



Distributionally robust policy learning

Statistical performance guarantee

Theorem

Under assumptions mentioned earlier, with probability at least 1− ε, we have in the
continuous case

RDRO(π̂DRO) ≤ 4

bη
√

n

(
(
√

2 + 1)κ(n) (Π) +

√
2 log

(
2

ε

)
+ C

)
,

and in the discrete case

RDRO(π̂DRO) ≤ 4M

bη
√

n

(
24(
√

2 + 1)κ(n) (Π) + 48
√
|D| log (2) +

√
2 log

(
2

ε

))
,

where κ(n) (Π) represents the complexity of the policy class Π, and η > 0 is a lower
bound for the propensity score (collection policy) π0(a, x) mentioned in the previous
assumption.
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Distributionally robust policy learning

Remarks on the complexity term κ(n)(Π)

Example

Finite class: For a policy class ΠFin containing a finite number of policies, we
have κ(n) (ΠFin) ≤

√
log(|ΠFin|).

Linear class: For X ⊂ Rp, each policy π ∈ ΠLin is parameterized by a set of d
vectors Θ = {θa ∈ Rp : a ∈ A} ∈ Rp×d , and the mapping π : X → A is defined as

πΘ(x) ∈ arg max
a∈A

{
θ>a x

}
.

Then, we have κ(n)(ΠLin) ≤ C
√

dp log(d) log(dp).

In general, κ(n)(Π) can be bounded by the VC dimension when d = 2, or the graph
dimension when d > 2.
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Numerical results

Simulation, real data experiments, and the selection of δ
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Numerical results

Simulation study: benchmark

Benchmark: let Π denote the class of all measurable mappings from contexts X to the
action set A.

Bayes policy π∗:
π∗ ∈ arg max

π∈Π0

EP[Y (π(X ))], and

Bayes DRO policy π∗DRO:

π∗DRO ∈ arg max
π∈Π

inf
P∈UP0(δ)

EP[Y (π(X ))].

Best policies, but may not in the policy class Π.

Not learnable, but theoretically easy to compute in the simulation environment,
because the policies are the best response for each X .
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Numerical results

Simulation study

3 actions; 5-dimensional features, but only the first two matter:

Y (i)|X ∼ N (µi(X ), σ2
i ), for i = 1, 2, 3.

where the conditional mean µi(x) and conditional variance σi are chosen as

µ1(x) = 0.2x(1), σ1 = 0.8,

µ2(x) = 1−
√

(x(1) + 0.5)2 + (x(2)− 1)2, σ2 = 0.2,

µ3(x) = 1−
√

(x(1) + 0.5)2 + (x(2) + 1)2, σ3 = 0.4.

Bayes policy: π∗(x) ∈ arg maxi=1,2,3{µi(x)};
DRO Bayes policy: π∗DRO(x) ∈ arg maxi=1,2,3

{
µi(x)− σ2

i

2α∗(π∗DRO)

}
.

The linear policy class: Π = {π(x) = arg maxa∈A
{
θ>a x

}
: θa ∈ Rp, a ∈ A}.
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Numerical results

Non-linear example with the linear policy class

(a) Bayes policy π∗;

(c) Bayes distribu-
tionally robust policy
π∗DRO
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Numerical results

3

3Credit: Getty Images/iStockphoto
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Numerical results

Backgrounds

Dataset Description:4 180002 data points on whether individuals voted in the 2006
primary election with their characteristics. There is 1 control and 4 treatments.

(a) Civic (b) Monitored

(c) Self History (d) Neighbors

4Gerber et al. [2008]
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Numerical results

Actions

There are 5 actions (1 control with probability 5/9 and 4 treatments each with
probability 1/9).

Nothing: No action is performed.
Civic: A letter with ”Do your civic duty” is mailed to the household before the
primary election.
Monitored: A letter with ”You are being studied” is mailed to the household
before the primary election.
Self History: A letter with the past voting records of the voter’s household is
mailed to the household before the primary election.
Neighbors: A letter with the past voting records of this voter’s household and
neighbors is mailed to the household.

Neighbors is dominant for the whole population. To make all actions comparable,
we minus an artificial cost of deploying each action:
Yi(a) = 1{voter i votes in 2006 under action a} − ca.

Goal: learn a distributionally robust policy to maximize voting turnout.
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Numerical results

Training and evaluation procedure

We use decision trees as the policy class.

We divide the training and test population based on the city (101 cities in the
dataset).

Natural covariate shifts and concept drifts; e.g., the distribution of year of birth is
generally different across different cities.
Leave-one-out to generate 101 pairs of training set and test set.

mean std min 5% quantile
Non-robust 0.0386 0.0991 -0.2844 -0.1104

Robust

δ = 0.1 0.0458 0.0989 -0.2321 -0.1007
δ = 0.2 0.0368 0.0895 -0.2314 -0.0785
δ = 0.3 0.0397 0.0864 -0.2313 -0.0677
δ = 0.4 0.0383 0.0863 -0.2312 -0.0677

Table 1: Comparison of important statistics for 101 test results.
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Numerical results

Results for δ = 0.1

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Q̂IPW(π)

0

1

2

3

4

5

6

7

D
en

si
ty

non-robust decision tree
π̂DRO, δ = 0.1

(a) Comparison of test performances between a
distributionally robust decision tree and a non-
robust decision tree
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(b) Example of a distributionally robust tree
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Numerical results

How to select the uncertain size δ in practice?

Selecting δ is more like a managerial decision rather than a scientific procedure.

Compute δ based on the training data:
Estimate distributions of Y using any causal inference/machine learning methods.
Randomly split training data into 20 cities (P20) against 80 cities (P80) 100 times.
Estimate δ based on KL(P20||P80) = KL(P20

X ||P80
X ) + EP20

X
[KL(P20

Y |X ||P80
Y |X )].

Check the performance of π̂δDRO using different value functions.
Robust policy does not compromise the non-robust value function.
The performance is not sensitive to δ, when δ ≥ 0.2.
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Extension to f -divergence uncertainty set

Extension to f -divergence uncertainty set

Up to now, all of the results are for Kullback-Leibler divergence.

We can also generalize to fk-divergence.
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Extension to f -divergence uncertainty set

Extension to f -divergence uncertainty set

For fk(t) , tk−kt+k−1
k(k−1)

, define f -divergence as

Dk(P||P0) ,
∫

fk

(
dP

dP0

)
dP0.

Theorem

Under assumptions mentioned above, with probability at least 1− ε, we have in the
continuous case (similar result for the discrete case)

max
π′∈Π

inf
P∈Uk

P0
(δ)

EP[Y (π′(X ))]− inf
P∈Uk

P0
(δ)

EP[Y (π̂DRO(X ))]

≤ 4ck(δ)

bη
√

n

(
(
√

2 + 1)κ(n) (Π) +

√
2 log

(
2

ε

)
+ C

)
,

where ck(δ) , (1 + k(k − 1)δ)1/k .
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