Distributionally Robust Batch Contextual Bandits

Nian Si Joint work with Jose Blanchet, Fan Zhang, and Zhengyuan Zhou

INFORMS 2021

October 24, 2021

- [Motivation: distributional shifts in batch contextual bandit](#page-2-0)
- ² [Distributionally robust formulation](#page-8-0)
- ³ [Distributionally robust policy learning](#page-23-0)
- [Numerical results](#page-31-0)
- Extension to f [-divergence uncertainty set](#page-52-0)

Motivation: distributional shifts in batch bandit

Motivation: distributional shifts in batch bandit

Motivation: distributional shifts in batch bandit

Motivation: distributional shifts in batch bandit

A collection of triplets of context, action and rewards in an environment $P_{\rm a}$.

We aim to deploy a robust policy in unknown environments P_b which are similar but slightly different from the previous environment.

 $P_{\rm b} \approx P_{\rm a}$

Main challenges

• Incomplete (bandit-type) data:

Main challenges

• Incomplete (bandit-type) data:

Distributional shifts: covariate shift and concept drift.

Setting

Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \ldots, Y(a^d)) \in \prod_{j=1}^d \mathcal{Y}_j.$

Setting

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \ldots, Y(a^d)) \in \prod_{j=1}^d \mathcal{Y}_j.$
- Batch bandit data: $\{(X_i, A_i, Y_i(A_i))\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \ldots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot | X_i)$ is known.

Setting

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \ldots, Y(a^d)) \in \prod_{j=1}^d \mathcal{Y}_j.$
- Batch bandit data: $\{(X_i, A_i, Y_i(A_i))\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \ldots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot | X_i)$ is known.
- **•** Goal: learn a robust policy that performs well in the presence of unknown distributional shifts.

Assumptions: standard assumptions¹

Assumption (Standard assumptions)

1. Unconfoundedness: $(Y(a^1), Y(a^2),..., Y(a^d))$ is independent with A conditional on X , *i.e.*,

 $(Y(a^1), Y(a^2), \ldots, Y(a^d)) \perp A \mid X.$

- 2. Overlap: There exists some $\eta > 0$, $\pi_0(a | x) > \eta$, $\forall (x, a) \in \mathcal{X} \times \mathcal{A}$.
- 3. Bounded reward support: $0 \le Y(a^i) \le M$ for $i = 1, 2, \ldots, d$.

¹This assumption is standard and commonly adopted in both the causal inference literature (Rosenbaum and Rubin [1983], Imbens [2004], Imbens and Rubin [2015]) and the policy learning literature (Zhang et al. [2012], Zhao et al. [2012], Kitagawa and Tetenov [2018], Swaminathan and Joachims [2015], Zhou et al. [2017]).

niansi@stanford.edu (Stanford) [DRO Batch Bandit](#page-0-0) October 24, 2021 6 / 28

Assumptions: positive densities/probabilities

Assumption (Positive densities/probabilities)

- 1. Continuous case: for any $i = 1, 2, ..., d$, $Y(a^i)|X$ has a conditional density $f_i(y_i|x)$, and $f_i(y_i|x) \geq \underline{b} > 0$ over the interval $[0, M]$ for any $x \in \mathcal{X}$.
- 2. Discrete case: for any $i = 1, 2, ..., d$, $Y(a^i)$ supported on a finite set D , and ${\bf P}_0(Y(a^i)=v|X)\geq \underline{b}>0$ for any $v\in \mathbb{D}$.

• How to model distributional shifts?

Kullback-Leibler divergence: $\mathit{KL}(\mathbf{P} || \mathbf{P}_0) \triangleq \int_{\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j} \log\bigg(\frac{\mathrm{d} \mathbf{P}}{\mathrm{d} \mathbf{P}_0}$ dP_0 ∂dP .

- How to model distributional shifts?
	- Kullback-Leibler divergence: $\mathit{KL}(\mathbf{P} || \mathbf{P}_0) \triangleq \int_{\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j} \log\bigg(\frac{\mathrm{d} \mathbf{P}}{\mathrm{d} \mathbf{P}_0}$ dP_0 ∂dP .
- Uncertainty set: $\mathcal{U}_{\mathsf{P}_0}(\delta) = \{ \mathsf{P} \mid \mathsf{KL}(\mathsf{P} || \mathsf{P}_0) \leq \delta \}.$

- How to model distributional shifts?
	- Kullback-Leibler divergence: $\mathit{KL}(\mathbf{P} || \mathbf{P}_0) \triangleq \int_{\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j} \log\bigg(\frac{\mathrm{d} \mathbf{P}}{\mathrm{d} \mathbf{P}_0}$ dP_0 ∂dP .
- Uncertainty set: $\mathcal{U}_{\mathsf{P}_0}(\delta) = \{ \mathsf{P} \mid \mathsf{KL}(\mathsf{P} || \mathsf{P}_0) \leq \delta \}.$
- Distributionally robust value function (population level): \bullet

$$
Q_{\mathrm{DRO}}(\pi) \triangleq \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))].
$$

- How to model distributional shifts?
	- Kullback-Leibler divergence: $\mathit{KL}(\mathbf{P} || \mathbf{P}_0) \triangleq \int_{\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j} \log\bigg(\frac{\mathrm{d} \mathbf{P}}{\mathrm{d} \mathbf{P}_0}$ dP_0 ∂dP .
- Uncertainty set: $\mathcal{U}_{\mathsf{P}_0}(\delta) = \{ \mathsf{P} \mid \mathsf{KL}(\mathsf{P} || \mathsf{P}_0) \leq \delta \}.$
- Distributionally robust value function (population level): \bullet

$$
\underbrace{Q_{\text{DRO}}(\pi) \triangleq \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[\gamma(\pi(X))]}_{\text{Infinite dimensional optimization.}}
$$
\nand it observations for \mathbf{P}_0 .

Strong duality² for the distributionally robust value function:

$$
Q_{\text{DRO}}(\pi) = \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]
$$

= $\sup_{\alpha \ge 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0}[\exp(-Y(\pi(X))/\alpha)] - \alpha \delta\}$

Strong duality² for the distributionally robust value function:

$$
Q_{\text{DRO}}(\pi) = \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0} [\exp(-Y(\pi(X))/\alpha)] - \alpha \delta \} = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1}{\{\pi(X) = A\}}}{\pi_0(A \mid X)} \right] - \alpha \delta \}.
$$

Strong duality² for the distributionally robust value function:

$$
Q_{\text{DRO}}(\pi) = \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0} [\exp(-Y(\pi(X))/\alpha)] - \alpha \delta \} = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1}{\{\pi(X) = A\}}}{\pi_0(A \mid X)} \right] - \alpha \delta \}.
$$

where ${\sf P}_0 * \pi_0$ denotes the product distribution on the space $\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j \times \mathcal{A}.$

Strong duality² for the distributionally robust value function:

$$
Q_{\text{DRO}}(\pi) = \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0} [\exp(-Y(\pi(X))/\alpha)] - \alpha \delta \} = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1}{\{\pi(X) = A\}}}{\pi_0(A \mid X)} \right] - \alpha \delta \}.
$$

where ${\sf P}_0 * \pi_0$ denotes the product distribution on the space $\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j \times \mathcal{A}.$ Finite-sample estimate: $\hat{Q}_{\text{DRO}}(\pi) = \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_n(\pi,\alpha) - \alpha \delta\}$, where

$$
\hat{W}_n(\pi,\alpha)=\frac{1}{n}\sum_{i=1}^n\frac{\exp(-Y_i(A_i)/\alpha)\mathbf{1}\{\pi(X_i)=A_i\}}{\pi_0(A_i\mid X_i)}.
$$

Strong duality² for the distributionally robust value function:

$$
Q_{\text{DRO}}(\pi) = \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0} [\exp(-Y(\pi(X))/\alpha)] - \alpha \delta \} = \sup_{\alpha \geq 0} \{-\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1}{\{\pi(X) = A\}}}{\pi_0(A \mid X)} \right] - \alpha \delta \}.
$$

Stanford University

where ${\sf P}_0 * \pi_0$ denotes the product distribution on the space $\mathcal{X} \times \prod_{j=1}^d \mathcal{Y}_j \times \mathcal{A}.$ Finite-sample estimate: $\hat{Q}_{\text{DRO}}(\pi) = \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_n(\pi,\alpha) - \alpha \delta\}$, where

$$
\hat{W}_n(\pi,\alpha) = \underbrace{\frac{1}{\sum_{i=1}^n \frac{1\{\pi(X_i)=A_i\}}{\pi_0(A_i|X_i)}}}_{\text{More stable}} \sum_{i=1}^n \frac{\exp\left(-Y_i(A_i)/\alpha\right) \mathbf{1}\{\pi(X_i)=A_i\}}{\pi_0(A_i|X_i)}.
$$
\n²Hu and Hong [2013]
\n<sup>niansi@stand.edu (Stanford)
\nORO Batch Bandit\n</sup>

Central limit theorem

Theorem

Under assumptions mentioned earlier, for any policy $\pi \in \Pi$, we have

$$
\sqrt{n}\left(\hat{Q}_{\mathrm{DRO}}(\pi) - Q_{\mathrm{DRO}}(\pi)\right) \Rightarrow \mathcal{N}\left(0, \sigma^2(\alpha^*)\right),
$$

where α^* is the optimal dual variable, defined by

$$
\alpha^* = \argmax_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0} \left[\exp(-Y(\pi(X))/\alpha) \right] - \alpha \delta \right\},\,
$$

and $\sigma^2(\alpha) =$

$$
\frac{\alpha^2}{\mathsf{E}[\exp\left(-Y(\pi(X))/\alpha\right)]^2} \mathsf{E}\left[\frac{1}{\pi_0\left(\pi(X)|X\right)}\left(\exp\left(-Y(\pi(X))/\alpha\right)-\mathsf{E}\left[\exp\left(-Y(\pi(X))/\alpha\right)\right]\right)^2\right]
$$

• How to find a good policy: arg max_{π∈Π} $Q_{\text{DRO}}(\pi)$?

- How to find a good policy: arg max_{π∈Π} $Q_{\text{DRO}}(\pi)$?
- Given a policy class Π, learn a distributionally robust policy:

$$
\hat{\pi}_{\text{DRO}} = \underset{\pi \in \Pi}{\arg \max} \hat{Q}_{\text{DRO}}(\pi)
$$
\n
$$
= \underset{\pi \in \Pi}{\arg \max} \underset{\alpha \ge 0}{\sup} \{-\alpha \log \hat{W}_n(\pi, \alpha) - \alpha \delta\}
$$

- How to find a good policy: arg max_{π∈Π} $Q_{\text{DRO}}(\pi)$?
- Given a policy class Π, learn a distributionally robust policy:

$$
\hat{\pi}_{\text{DRO}} = \underset{\pi \in \Pi}{\arg \max} \hat{Q}_{\text{DRO}}(\pi)
$$
\n
$$
= \underset{\pi \in \Pi}{\arg \max} \underset{\alpha \ge 0}{\sup} \{-\alpha \log \hat{W}_n(\pi, \alpha) - \alpha \delta\}
$$

- Alternatively update π and α ;
	- Using Newton-Raphson method to update α ; converge fast empirically.

- How to find a good policy: arg max_{π∈Π} $Q_{\text{DRO}}(\pi)$?
- Given a policy class Π, learn a distributionally robust policy:

$$
\hat{\pi}_{\text{DRO}} = \underset{\pi \in \Pi}{\arg \max} \hat{Q}_{\text{DRO}}(\pi)
$$
\n
$$
= \underset{\pi \in \Pi}{\arg \max} \underset{\alpha \ge 0}{\sup} \{-\alpha \log \hat{W}_n(\pi, \alpha) - \alpha \delta\}
$$

- Alternatively update π and α ;
	- Using Newton-Raphson method to update α ; converge fast empirically.
- How does $\hat{\pi}_{\text{DRO}}$ perform?

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) = \max_{\pi' \in \Pi} Q_{\text{DRO}}(\pi') - Q_{\text{DRO}}(\hat{\pi}_{\text{DRO}})
$$

=
$$
\max_{\pi' \in \Pi} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi'(X))] - \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\hat{\pi}_{\text{DRO}}(X))].
$$

Statistical performance guarantee

Theorem

Under assumptions mentioned earlier, with probability at least $1 - \varepsilon$, we have in the continuous case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4}{\underline{b}\eta\sqrt{n}}\left((\sqrt{2}+1)\kappa^{(n)}\left(\Pi\right)+\sqrt{2\log\left(\frac{2}{\varepsilon}\right)}+C\right),
$$

and in the discrete case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4M}{\underline{b}\eta\sqrt{n}}\left(24(\sqrt{2}+1)\kappa^{(n)}\left(\Pi\right)+48\sqrt{|\mathbb{D}|\log\left(2\right)}+\sqrt{2\log\left(\frac{2}{\varepsilon}\right)}\right),
$$

where $\kappa^{(n)}\left(\Pi\right)$ represents the complexity of the policy class Π , and $\eta>0$ is a lower bound for the propensity score (collection policy) $\pi_0(a, x)$ mentioned in the previous assumption.

niansi@stanford.edu (Stanford) [DRO Batch Bandit](#page-0-0) Dr. 2021 12 / 28

Statistical performance guarantee

Theorem

Under assumptions mentioned earlier, with probability at least $1 - \varepsilon$, we have in the continuous case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4}{\underline{b}\eta\sqrt{n}}\left((\sqrt{2}+1)\kappa^{(n)}\left(\Pi\right)+\sqrt{2\log\left(\frac{2}{\varepsilon}\right)}+C\right),
$$

and in the discrete case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4M}{\underline{b}\eta\sqrt{n}} \left(24(\sqrt{2}+1) \kappa^{(n)}\left(\Pi\right) + 48\sqrt{|\mathbb{D}|\log\left(2\right)} + \sqrt{2\log\left(\frac{2}{\varepsilon}\right)} \right),
$$

where $\kappa^{(n)}\left(\Pi\right)$ represents the complexity of the policy class Π , and $\eta>0$ is a lower bound for the propensity score (collection policy) $\pi_0(a, x)$ mentioned in the previous assumption.

Statistical performance guarantee

Theorem

Under assumptions mentioned earlier, with probability at least $1 - \varepsilon$, we have in the continuous case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4}{\underline{b}\eta\sqrt{n}}\left((\sqrt{2}+1)\kappa^{(n)}\left(\Pi\right)+\sqrt{2\log\left(\frac{2}{\varepsilon}\right)}+C\right),
$$

and in the discrete case

$$
R_{\text{DRO}}(\hat{\pi}_{\text{DRO}}) \leq \frac{4M}{\underline{b}\eta\sqrt{n}}\left(24(\sqrt{2}+1)\kappa^{(n)}\left(\Pi\right)+48\sqrt{|\mathbb{D}|\log\left(2\right)}+\sqrt{2\log\left(\frac{2}{\varepsilon}\right)}\right),
$$

where $\kappa^{(n)}\left(\Pi\right)$ represents the complexity of the policy class Π , and $\eta>0$ is a lower bound for the propensity score (collection policy) $\pi_0(a, x)$ mentioned in the previous assumption.

Remarks on the complexity term $\kappa^{(n)}(\Pi)$

Example

- **Finite class:** For a policy class Π_{Fin} containing a finite number of policies, we have $\kappa^{(n)}\left(\Pi_{\mathrm{Fin}}\right) \leq \sqrt{\log(|\Pi_{\mathrm{Fin}}|)}.$
- **Linear class:** For $X \subset \mathbb{R}^p$, each policy $\pi \in \Pi_{\text{Lin}}$ is parameterized by a set of a vectors $\Theta = \{\theta_a \in \mathbf{R}^p : a \in \mathcal{A}\} \in \mathbf{R}^{p \times d}$, and the mapping $\pi : \mathcal{X} \to \mathcal{A}$ is defined as

$$
\pi_{\Theta}(x) \in \underset{a \in \mathcal{A}}{\arg \max} \ \left\{ \theta_{a}^{\top} x \right\}.
$$

Then, we have $\kappa^{(n)}(\Pi_{\mathrm{Lin}}) \leq C \sqrt{dp \log(d) \log(dp)}.$

In general, $\kappa^{(n)}(\Pi)$ can be bounded by the VC dimension when $d=2$, or the graph dimension when $d > 2$.

Simulation, real data experiments, and the selection of δ

Simulation study: benchmark

Benchmark: let $\overline{\Pi}$ denote the class of all measurable mappings from contexts X to the action set A.

Bayes policy $\overline{\pi}^*$:

$$
\overline{\pi}^* \in \argmax_{\pi \in \overline{\Pi_0}} \mathsf{E}_{\mathsf{P}}[Y(\pi(X))], \text{ and}
$$

Bayes DRO policy $\overline{\pi}_{\text{DRO}}^*$:

$$
\overline{\pi}_{\mathrm{DRO}}^* \in \argmax_{\pi \in \overline{\Pi}} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))].
$$

Simulation study: benchmark

Benchmark: let Π denote the class of all measurable mappings from contexts X to the action set A.

Bayes policy $\overline{\pi}^*$:

$$
\overline{\pi}^* \in \argmax_{\pi \in \overline{\Pi_0}} \mathsf{E}_{\mathsf{P}}[Y(\pi(X))], \text{ and}
$$

• Bayes DRO policy
$$
\overline{\pi}_{\text{DRO}}^*
$$
:

$$
\overline{\pi}_{\text{DRO}}^* \in \underset{\pi \in \overline{\Pi}}{\arg \max} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))].
$$

- \bullet Best policies, but may not in the policy class Π .
- Not learnable, but theoretically easy to compute in the simulation environment, because the policies are the best response for each X .

Simulation study

3 actions; 5-dimensional features, but only the first two matter:

$$
Y(i)|X \sim \mathcal{N}(\mu_i(X), \sigma_i^2), \text{ for } i = 1, 2, 3.
$$

where the conditional mean $\mu_i(x)$ and conditional variance σ_i are chosen as

$$
\mu_1(x) = 0.2x(1), \n\sigma_1 = 0.8, \n\mu_2(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) - 1)^2}, \n\sigma_2 = 0.2, \n\mu_3(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) + 1)^2}, \n\sigma_3 = 0.4.
$$

Simulation study

3 actions; 5-dimensional features, but only the first two matter:

$$
Y(i)|X \sim \mathcal{N}(\mu_i(X), \sigma_i^2), \text{ for } i = 1, 2, 3.
$$

where the conditional mean $\mu_i(x)$ and conditional variance σ_i are chosen as

$$
\mu_1(x) = 0.2x(1), \n\sigma_1 = 0.8, \n\mu_2(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) - 1)^2}, \n\sigma_2 = 0.2, \n\mu_3(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) + 1)^2}, \n\sigma_3 = 0.4.
$$

Bayes policy: $\overline{\pi}^*(x) \in \argmax_{i=1,2,3} {\mu_i(x)};$ DRO Bayes policy: $\overline{\pi}_{\text{DRO}}^{*}(x) \in \argmax_{i=1,2,3} \left\{ \mu_i(x) - \frac{\sigma_i^2}{2\alpha^*(\pi_{\text{DRO}}^{*})} \right\}$ $\big\}$.

Simulation study

3 actions; 5-dimensional features, but only the first two matter:

$$
Y(i)|X \sim \mathcal{N}(\mu_i(X), \sigma_i^2), \text{ for } i = 1, 2, 3.
$$

where the conditional mean $\mu_i(x)$ and conditional variance σ_i are chosen as

$$
\mu_1(x) = 0.2x(1), \n\sigma_1 = 0.8, \n\mu_2(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) - 1)^2}, \n\sigma_2 = 0.2, \n\mu_3(x) = 1 - \sqrt{(x(1) + 0.5)^2 + (x(2) + 1)^2}, \n\sigma_3 = 0.4.
$$

- Bayes policy: $\overline{\pi}^*(x) \in \argmax_{i=1,2,3} {\mu_i(x)};$ DRO Bayes policy: $\overline{\pi}_{\text{DRO}}^{*}(x) \in \argmax_{i=1,2,3} \left\{ \mu_i(x) - \frac{\sigma_i^2}{2\alpha^*(\pi_{\text{DRO}}^{*})} \right\}$ $\big\}$.
- The linear policy class: $\Pi = \{\pi(x) = \argmax_{a \in \mathcal{A}} \ \{\theta_a^{\top} x\} : \theta_a \in \mathbb{R}^p, a \in \mathcal{A}\}.$

Non-linear example with the linear policy class

(a) Bayes policy $\overline{\pi}^*$;

(c) Bayes distributionally robust policy $\overline{\pi}_{\text{DRO}}^{*}$

(b) non-DRO linear policy;

Stanford University

(d) distributionally robust linear policy $\hat{\pi}_{\text{DRO}}$.

Figure 1: $\sigma_1 = 0.8$ (blue), $\sigma_2 = 0.2$ (orange), $\sigma_3 = 0.4$ (green).

Non-linear example with the linear policy class

(a) Bayes policy $\overline{\pi}^*$;

(c) Bayes distributionally robust policy $\overline{\pi}_{\text{DRO}}^{*}$

(b) non-DRO linear policy;

Stanford University

(d) distributionally robust linear policy $\hat{\pi}_{\text{DRO}}$.

Figure 1: $\sigma_1 = 0.8$ (blue), $\sigma_2 = 0.2$ (orange), $\sigma_3 = 0.4$ (green).

Non-linear example with the linear policy class

(a) Bayes policy $\overline{\pi}^*$;

(c) Bayes distributionally robust policy $\overline{\pi}_{\text{DRO}}^{*}$

(b) non-DRO linear policy;

Stanford University

(d) distributionally robust linear policy $\hat{\pi}_{\text{DRO}}$.

Figure 1: $\sigma_1 = 0.8$ (blue), $\sigma_2 = 0.2$ (orange), $\sigma_3 = 0.4$ (green).

³Credit: Getty Images/iStockphoto

niansi@stanford.edu (Stanford) [DRO Batch Bandit](#page-0-0) October 24, 2021 18 / 28

Backgrounds

- Stanford University
- Dataset Description:⁴ 180002 data points on whether individuals voted in the 2006 primary election with their characteristics. There is 1 control and 4 treatments.

Actions

- There are 5 actions (1 control with probability 5/9 and 4 treatments each with probability $1/9$).
	- **Nothing:** No action is performed.
	- Civic: A letter with "Do your civic duty" is mailed to the household before the primary election.
	- Monitored: A letter with "You are being studied" is mailed to the household before the primary election.
	- Self History: A letter with the past voting records of the voter's household is mailed to the household before the primary election.
	- Neighbors: A letter with the past voting records of this voter's household and neighbors is mailed to the household.

Actions

- \bullet There are 5 actions (1 control with probability $5/9$ and 4 treatments each with probability $1/9$).
	- Nothing: No action is performed.
	- Civic: A letter with "Do your civic duty" is mailed to the household before the primary election.
	- Monitored: A letter with "You are being studied" is mailed to the household before the primary election.
	- Self History: A letter with the past voting records of the voter's household is mailed to the household before the primary election.
	- Neighbors: A letter with the past voting records of this voter's household and neighbors is mailed to the household.
- • Neighbors is dominant for the whole population. To make all actions comparable, we minus an artificial cost of deploying each action: $Y_i(a) = 1$ {voter *i* votes in 2006 under action a } – c_a .

Actions

- \bullet There are 5 actions (1 control with probability $5/9$ and 4 treatments each with probability $1/9$).
	- **Nothing:** No action is performed.
	- Civic: A letter with "Do your civic duty" is mailed to the household before the primary election.
	- Monitored: A letter with "You are being studied" is mailed to the household before the primary election.
	- Self History: A letter with the past voting records of the voter's household is mailed to the household before the primary election.
	- Neighbors: A letter with the past voting records of this voter's household and neighbors is mailed to the household.
- Neighbors is dominant for the whole population. To make all actions comparable, we minus an artificial cost of deploying each action: $Y_i(a) = 1$ {voter *i* votes in 2006 under action a } – c_a .
- Goal: learn a distributionally robust policy to maximize voting turnout.

Training and evaluation procedure

Training and evaluation procedure

- \bullet We divide the training and test population based on the *city* (101 cities in the dataset).
	- Natural covariate shifts and concept drifts; e.g., the distribution of year of birth is generally different across different cities.
	- Leave-one-out to generate 101 pairs of training set and test set.

Training and evaluation procedure

- \bullet We divide the training and test population based on the *city* (101 cities in the dataset).
	- Natural covariate shifts and concept drifts; e.g., the distribution of year of birth is generally different across different cities.
	- Leave-one-out to generate 101 pairs of training set and test set.

Table 1: Comparison of important statistics for 101 test results.

Results for $\delta = 0.1$

(a) Comparison of test performances between a distributionally robust decision tree and a nonrobust decision tree

(b) Example of a distributionally robust tree

How to select the uncertain size δ in practice?

Selecting δ is more like a managerial decision rather than a scientific procedure.

How to select the uncertain size δ in practice?

Selecting δ is more like a managerial decision rather than a scientific procedure.

- Compute δ based on the training data:
	- **Estimate distributions of Y using any causal inference/machine learning methods.**
	- Randomly split training data into 20 cities (\mathbf{P}^{20}) against 80 cities (\mathbf{P}^{80}) 100 times.
	- Estimate δ based on $\mathcal{K}L(\mathbf{P}^{20}||\mathbf{P}^{80}) = \mathcal{K}L(\mathbf{P}^{20}_X||\mathbf{P}^{80}_X) + \mathbf{E}_{\mathbf{P}^{20}_X}[\mathcal{K}L(\mathbf{P}^{20}_Y|X||\mathbf{P}^{80}_Y)].$

How to select the uncertain size δ in practice?

Selecting δ is more like a managerial decision rather than a scientific procedure.

- Compute δ based on the training data:
	- Estimate distributions of Y using any causal inference/machine learning methods.
	- Randomly split training data into 20 cities (\mathbf{P}^{20}) against 80 cities (\mathbf{P}^{80}) 100 times.
	- Estimate δ based on $KL(\mathbf{P}^{20}||\mathbf{P}^{80}) = KL(\mathbf{P}^{20}_X||\mathbf{P}^{80}_X) + \mathbf{E}_{\mathbf{P}^{20}_X}[KL(\mathbf{P}^{20}_Y|X||\mathbf{P}^{80}_Y)].$
- Check the performance of $\hat{\pi}^{\delta}_{\mathrm{DRO}}$ using different value functions.
	- Robust policy does not compromise the non-robust value function.
	- The performance is not sensitive to δ , when $\delta \geq 0.2$.

Extension to f -divergence uncertainty set

Up to now, all of the results are for Kullback-Leibler divergence.

 \bullet We can also generalize to f_k -divergence.

Extension to f -divergence uncertainty set

$$
D_k(\mathbf{P}||\mathbf{P}_0) \triangleq \int f_k\left(\frac{d\mathbf{P}}{d\mathbf{P}_0}\right) d\mathbf{P}_0.
$$

Extension to f-divergence uncertainty set

For $f_k(t) \triangleq \frac{t^k - kt + k-1}{k(k-1)}$, define f -divergence as

$$
D_k(\mathbf{P}||\mathbf{P}_0) \triangleq \int f_k\left(\frac{d\mathbf{P}}{d\mathbf{P}_0}\right)d\mathbf{P}_0.
$$

Theorem

Under assumptions mentioned above, with probability at least $1 - \varepsilon$, we have in the continuous case (similar result for the discrete case)

$$
\max_{\pi' \in \Pi} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}^k(\delta)} \mathsf{E}_{\mathbf{P}}[Y(\pi'(X))] - \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}^k(\delta)} \mathsf{E}_{\mathbf{P}}[Y(\hat{\pi}_{\mathrm{DRO}}(X))]
$$
\n
$$
\leq \frac{4c_k(\delta)}{\underline{b}\eta\sqrt{n}} \left((\sqrt{2}+1)\kappa^{(n)}(\Pi) + \sqrt{2\log\left(\frac{2}{\varepsilon}\right)} + C \right),
$$

where $c_k(\delta) \triangleq (1 + k(k-1)\delta)^{1/k}$.

Si N, Zhang F, Zhou Z, and Blanchet J. "Distributional Robust Batch Contextual Bandits." arXiv preprint arXiv:2006.05630 (2020). under review.

Thanks!

[Reference](#page-56-0)

References I

- Alan S Gerber, Donald P Green, and Christopher W Larimer. Social pressure and voter turnout: Evidence from a large-scale field experiment. American political Science review, 102(1):33–48, 2008.
- Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust optimization. Available at Optimization Online, 2013.
- Guido W Imbens. Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and statistics, 86(1):4–29, 2004.
- G.W. Imbens and D.B. Rubin. Causal Inference in Statistics, Social, and Biomedical Sciences. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press, 2015. ISBN 9780521885881.
- Toru Kitagawa and Aleksey Tetenov. Who should be treated? empirical welfare maximization methods for treatment choice. Econometrica, 86(2):591–616, 2018.
- Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.
- Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through counterfactual risk minimization. Journal of Machine Learning Research, 16:1731–1755, 2015.

- Baqun Zhang, Anastasios A Tsiatis, Marie Davidian, Min Zhang, and Eric Laber. Estimating optimal treatment regimes from a classification perspective. Stat, 1(1):103–114, 2012.
- Yingqi Zhao, Donglin Zeng, A John Rush, and Michael R Kosorok. Estimating individualized treatment rules using outcome weighted learning. Journal of the American Statistical Association, 107(499): 1106–1118, 2012.
- Xin Zhou, Nicole Mayer-Hamblett, Umer Khan, and Michael R Kosorok. Residual weighted learning for estimating individualized treatment rules. Journal of the American Statistical Association, 112(517): 169–187, 2017.