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Motivation: Distributional Shift in Batch Contextual Bandit
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A collection of bandit observational
data: {(X;, A, Yi)}r, "R P, % o,
given the known collection policy
A ~ mo(- [ X).
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A collection of bandit observational How to design a robust policy for the
data: {(X;, A, Y})}7_, "< P, % m, environment Py, ~ P,?

given the known collection policy

Aj ~ mo(- | Xi).
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Distributionally Robust Formulation and Policy Evaluation Setting
Setting

o Context: X € X; Actions: A€ A = {al,a?,...,a%}; Rewards:
(Y(a'), Y(2%).....Y(a%) e I, V.
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support, and positive densities.
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Setting

o Context: X € X; Actions: A€ A = {al,a?,...,a%}; Rewards:
(Y(a'), Y(2%).....Y(a%) e I, V.

e Batch bandit data: {(X;, A; Y)}, 1» where
(Xi, Yi(al), Yi(2?), ..., Yi(a?)) "5 Pg, and A; ~ mo(- | X;).

@ Assumptions: unconfoundedness, overlapping, bounded reward
support, and positive densities.

o Forany i=1,2,...,d, Y(a')|X has a non-zero conditional density
fi(yi|x) > b > 0 over the interval [0, M].
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Distributionally Robust Formulation and Policy Evaluation Setting
Setting

o Context: X € X; Actions: A€ A = {al,a?,...,a%}; Rewards:

(Y(a'), Y(2%).....Y(a%) e I, V.

e Batch bandit data: {(X;, A; Y)}, 1» where
(X:, Yi(al), Yi(2?), ..., Yi(a?)) " Py, and A; ~ mo(- | Xi).
@ Assumptions: unconfoundedness, overlapping, bounded reward
support, and positive densities.
o Forany i=1,2,...,d, Y(a')|X has a non-zero conditional density
fi(yi|x) > b > 0 over the interval [0, M].
@ Goal: learn a robust policy that performs well in the presence of the

distributional shifts.
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Distributionally Robust Formulation and Policy Evaluation

e Uncertainty set: Up,(6) = {P < Pq | KL(P||Po) < §}.
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Distributionally Robust Formulation and Policy Evaluation

@ Uncertainty set: Up,(0) = {P < Po | KL(P||Po) < ¢}.
@ Strong duality for the distributionally robust value function:

Qoro(m) = i EplY(x(X))]

Po(
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Distributionally Robust Formulation and Policy Evaluation

@ Uncertainty set: Up,(0) = {P < Po | KL(P||Po) < ¢}.
@ Strong duality for the distributionally robust value function:

Qoro(m) = i EplY(x(X))]

Po(

s {—alogEp, [exp(—Y(7(X))/a)] — ad}

{~atogep,., | ZREVERERO= A o5t

=sup
a>0
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Distributionally Robust Formulation and Policy Evaluation

@ Uncertainty set: Up,(0) = {P < Po | KL(P||Po) < ¢}.
@ Strong duality for the distributionally robust value function:

Qoro(r) =, inf _Ep[Y(m(X))

Po(9)
o {—alog Ep, [exp(—Y(7(X))/a)] — ad}

g o [T 0]

o Finite-sample estimate: Qpro(w) = sup,>o{—alog W,(r,a) — ad},
where

W, (7, o) =

n  {n(
>i1 {WO(A|X) i=1 W0A|X)
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Distributionally Robust Formulation and Policy Evaluation

@ Uncertainty set: Up,(0) = {P < Po | KL(P||Po) < ¢}.
@ Strong duality for the distributionally robust value function:

Qoro(r) =, inf _Ep[Y(m(X))

Po(9)
o {—alog Ep, [exp(—Y(7(X))/a)] — ad}

g o [T 0]

o Finite-sample estimate: Qpro(w) = sup,>o{—alog W,(r,a) — ad},

where
A B n 1{m(X Ai} e
() = = e ,}Z WOA P YilA) ).
i=1 7rO(A| , i=1
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Distributionally Robust Formulation and Policy Evaluation A Central Limit Theorem

Central Limit Theorem

Theorem

Under standard assumptions, for any policy m € I, we have
v (@oro(m) = Qoro(r)) = A (0,0%(a"))
where o is the optimal dual variable, defined by
o = argmax {—alog Bp, [exp(—Y (7(X))/a)] — ad},

and

2Oé = a2 1 exp(— ™ «
l0) =g |y (0 Y ) e)

~ Elexp (=Y (r(X))/)])]
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A il el
A Learning Algorithm

@ How to find a good policy:

argmax inf Ep[Y(7w(X))]?
%el‘l Pelip, (9) PV (m(X))]
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A Learning Algorithm

@ How to find a good policy:

argmax inf Ep[Y(7w(X))]?
%el‘l Pelip, (9) PV (m(X))]

@ Given a policy class I1, learn a distributionally robust policy:
fpro = argmax Qpro()
well

= argmaxsup{—alog W,(r,a) — ad}
m€el >0
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A Learning Algorithm

@ How to find a good policy:

argmax inf Ep[Y(7w(X))]?
%el‘l Pelip, (9) PV (m(X))]

@ Given a policy class I1, learn a distributionally robust policy:
fpro = argmax Qpro()
well

= argmaxsup{—alog W,(r,a) — ad}
m€el >0

o Alternatively update 7 and «;
o Using Newton-Raphson method to update «; converge fast empirically.
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Statistical Performance Guarantee

Theorem

Under assumptions mentioned above, with probability at least 1 — ¢, we
have

inf  Ep[Y(#'(X))]— inf Ep[Y(m(X
MK ol ) EPLY (/00N = ot EelY (r(X))]

4 i 2
< o <(ﬁ+1),<;( ) (M) + 4/2log <6> +C>,

where k(") (M) is the entropy integral defined via the Hammer distance in

M, n > 0 is a lower bound for the propensity score (collection policy)
mo(a, x), and C is a universal constant.
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Simulation Study: Benchmark

Benchmark: let T denotes the class of all measurable mappings from
contexts X’ to the action set A.

@ Bayes policy 7*:

7 € argmax Ep[Y(7(X))], and
men

@ Bayes DRO policy !

Thro € argmax _ inf  Ep[Y(7(X))].
wen €H4py(s)
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Simulation Study: Benchmark

Benchmark: let T denotes the class of all measurable mappings from
contexts X’ to the action set A.

@ Bayes policy 7*:

7 € argmax Ep[Y(7(X))], and
men

@ Bayes DRO policy !

Thro € argmax _ inf  Ep[Y(7(X))].
wen €H4py(s)

@ Easy to compute, because the policies are the best response for each
X.
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Simulation Study: A Linear Example

@ A linear example: 5-dimensional features, but only the first two
matters:

Y()X ~N(B] X,0?), fori=1,2,3.

for Bl = (17070707 0)752 = (_1/27 \/§/2303070)753 =
(-1/2,—+/3/2,0,0,0). and 01 = 0.2,0, = 0.5,03 = 0.8.
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Simulation Study: A Linear Example

@ A linear example: 5-dimensional features, but only the first two
matters:

Y()X ~N(B] X,0?), fori=1,2,3.

for 81 = (LOvaOv O)aﬁ2 = (_1/27 \/§/2703030)753 =

(-1/2,—+/3/2,0,0,0). and 01 = 0.2,02 = 0.5,03 = 0.8.
@ The linear policy class:

M= {n(x) =argmax,c4 {0,x}:0,€RP, ac A}
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Simulation Study: A Linear Example

@ A linear example: 5-dimensional features, but only the first two
matters:

Y()X ~N(B] X,0?), fori=1,2,3.
for 81 = (1,0,0,0,0), 32 = (—1/2,4/3/2,0,0,0), B3 =
(-1/2,—+/3/2,0,0,0). and 01 = 0.2,02 = 0.5,03 = 0.8.
@ The linear policy class:
M= {n(x) =argmax,c4 {0,x}:0,€RP, ac A}
@ Collection policy mp:

Region 1 | Region 2 | Region 3
Action 1 0.50 0.25 0.25
Action 2 0.25 0.50 0.25
Action 3 0.25 0.25 0.50

Table 1: The probabilities of selecting an action based on 7 in the linear
example.
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Linear Example
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Figure 1: (a) Bayes policy 7©*; (b) non-DRO linear policy; (c) Bayes distributionally robust
policy Tfyr;: (d) distributionally robust linear policy Apro-
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Non-linear Example with the Linear Policy Class

o 075 -0s0 025 b0 035 0% 075 10 100 075 050 025 000 035 080 075 100
X1 X1

Figure 2: (a) Bayes policy 7©*; (b) non-DRO linear policy; (c) Bayes distributionally robust
policy Tjyr; (d) distributionally robust linear policy #Aipro. o1 = 0.8,02 = 0.2,03 = 0.4.
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Extension to f-divergence Uncertainty Set

For fi(t) £ % define f-divergence as

dP
Di(P|IPo) 2 [ fi [ 22 ) ap.
x(P|[Po) /k<dPo>d 0
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Extension to f-divergence Uncertainty Set

Extension to f-divergence Uncertainty Set

For fi(t) £ % define f-divergence as

dP
Di(P|IPo) 2 [ fi [ 22 ) ap.
x(P|[Po) /k<dPo>d 0

Theorem

Under assumptions mentioned above, with probability at least 1 — ¢, we
have

inf  Ep[Y(#'(X))] = inf Ep[Y(m(X
2l EPLY (OO = it EelY (0]

< t;\%) <(ﬁ+ 1) (M) + 4 | 2log <§> + C> ,

where ¢, (8) & (1 + k(k — 1)8)Y/k.
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