Distributionally Robust Batch Contextual Bandits

Nian Si Joint work with Fan Zhang, Zhengyuan Zhou, and Jose Blanchet

INFORMS 2020

October 3, 2020

Road map

- Motivation: Distributional Shift in Batch Contextual Bandit
- Distributionally Robust Formulation and Policy Evaluation
 - Setting
 - A Central Limit Theorem
- Oistributionally Robust Policy Learning
 - A learning algorithm
 - Statistical Performance Guarantee
- Mumerical Results
- 5 Extension to f-divergence Uncertainty Set

Motivation: Distributional Shift in Batch Bandit

A collection of bandit observational data: $\{(X_i, A_i, Y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mathbf{P}_a * \pi_0$, given the known collection policy $A_i \sim \pi_0(\cdot \mid X_i)$.

Motivation: Distributional Shift in Batch Bandit

A collection of bandit observational data: $\{(X_i, A_i, Y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mathbf{P}_a * \pi_0$, given the known collection policy $A_i \sim \pi_0(\cdot \mid X_i)$.

How to design a robust policy for the environment $\textbf{P}_{\rm b} \approx \textbf{P}_{\rm a} ?$

• Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \dots, Y(a^d)) \in \prod_{i=1}^d \mathcal{Y}_i$.

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \dots, Y(a^d)) \in \prod_{i=1}^d \mathcal{Y}_i$.
- Batch bandit data: $\{(X_i, A_i, Y_i)\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \dots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot \mid X_i)$.

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \dots, Y(a^d)) \in \prod_{i=1}^d \mathcal{Y}_i$.
- Batch bandit data: $\{(X_i, A_i, Y_i)\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \dots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot \mid X_i)$.
- Assumptions: unconfoundedness, overlapping, bounded reward support, and positive densities.

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \dots, Y(a^d)) \in \prod_{i=1}^d \mathcal{Y}_i$.
- Batch bandit data: $\{(X_i, A_i, Y_i)\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \dots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot \mid X_i)$.
- Assumptions: unconfoundedness, overlapping, bounded reward support, and positive densities.
 - For any i = 1, 2, ..., d, $Y(a^i)|X$ has a non-zero conditional density $f_i(y_i|x) \ge \underline{b} > 0$ over the interval [0, M].

- Context: $X \in \mathcal{X}$; Actions: $A \in \mathcal{A} = \{a^1, a^2, \dots, a^d\}$; Rewards: $(Y(a^1), Y(a^2), \dots, Y(a^d)) \in \prod_{i=1}^d \mathcal{Y}_i$.
- Batch bandit data: $\{(X_i, A_i, Y_i)\}_{i=1}^n$, where $(X_i, Y_i(a^1), Y_i(a^2), \dots, Y_i(a^d)) \stackrel{i.i.d.}{\sim} \mathbf{P}_0$, and $A_i \sim \pi_0(\cdot \mid X_i)$.
- Assumptions: unconfoundedness, overlapping, bounded reward support, and positive densities.
 - For any i = 1, 2, ..., d, $Y(a^i)|X$ has a non-zero conditional density $f_i(y_i|x) \ge \underline{b} > 0$ over the interval [0, M].
- Goal: learn a robust policy that performs well in the presence of the distributional shifts.

• Uncertainty set: $\mathcal{U}_{\mathbf{P}_0}(\delta) = \{\mathbf{P} \ll \mathbf{P}_0 \mid \mathit{KL}(\mathbf{P}||\mathbf{P}_0) \leq \delta\}.$

- Uncertainty set: $\mathcal{U}_{\mathbf{P}_0}(\delta) = \{\mathbf{P} \ll \mathbf{P}_0 \mid \mathit{KL}(\mathbf{P}||\mathbf{P}_0) \leq \delta\}.$
- Strong duality for the distributionally robust value function:

$$Q_{\mathrm{DRO}}(\pi) := \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_{0}(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]$$

- Uncertainty set: $\mathcal{U}_{\mathbf{P}_0}(\delta) = \{\mathbf{P} \ll \mathbf{P}_0 \mid \mathit{KL}(\mathbf{P}||\mathbf{P}_0) \leq \delta\}.$
- Strong duality for the distributionally robust value function:

$$\begin{split} Q_{\mathrm{DRO}}(\pi) &:= \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] \\ &= \sup_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0} \left[\exp(-Y(\pi(X))/\alpha) \right] - \alpha \delta \right\} \\ &= \sup_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1} \{\pi(X) = A\}}{\pi_0(A \mid X)} \right] - \alpha \delta \right\}. \end{split}$$

- Uncertainty set: $\mathcal{U}_{\mathbf{P}_0}(\delta) = {\mathbf{P} \ll \mathbf{P}_0 \mid \mathit{KL}(\mathbf{P}||\mathbf{P}_0) \leq \delta}.$
- Strong duality for the distributionally robust value function:

$$\begin{aligned} Q_{\mathrm{DRO}}(\pi) &:= \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] \\ &= \sup_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0} \left[\exp(-Y(\pi(X))/\alpha) \right] - \alpha \delta \right\} \end{aligned}$$

$$= \sup_{\alpha \ge 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1} \{ \pi(X) = A \}}{\pi_0(A \mid X)} \right] - \alpha \delta \right\}.$$

• Finite-sample estimate: $\hat{Q}_{DRO}(\pi) = \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_n(\pi, \alpha) - \alpha \delta\},$ where

$$\hat{W}_n(\pi,\alpha) = \frac{1}{\sum_{i=1}^n \frac{1\{\pi(X_i) = A_i\}}{\pi_0(A_i|X_i)}} \sum_{i=1}^n \frac{1\{\pi(X_i) = A_i\}}{\pi_0(A_i \mid X_i)} \exp(-Y_i(A_i)/\alpha).$$

- Uncertainty set: $\mathcal{U}_{\mathbf{P}_0}(\delta) = {\mathbf{P} \ll \mathbf{P}_0 \mid \mathit{KL}(\mathbf{P}||\mathbf{P}_0) \leq \delta}.$
- Strong duality for the distributionally robust value function:

$$\begin{aligned} Q_{\mathrm{DRO}}(\pi) &:= \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] \\ &= \sup_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0} \left[\exp(-Y(\pi(X))/\alpha) \right] - \alpha \delta \right\} \\ &= \sup_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0 * \pi_0} \left[\frac{\exp(-Y(A)/\alpha) \mathbf{1} \{\pi(X) = A\}}{\pi_0(A \mid X)} \right] - \alpha \delta \right\}. \end{aligned}$$

• Finite-sample estimate: $\hat{Q}_{DRO}(\pi) = \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_n(\pi, \alpha) - \alpha \delta\},$ where

$$\hat{W}_n(\pi,\alpha) = \frac{1}{\sum_{i=1}^n \frac{1\{\pi(X_i) = A_i\}}{\pi_0(A_i|X_i)}} \sum_{i=1}^n \frac{1\{\pi(X_i) = A_i\}}{\pi_0(A_i \mid X_i)} \exp(-Y_i(A_i)/\alpha).$$

Central Limit Theorem

Theorem

Under standard assumptions, for any policy $\pi \in \Pi$, we have

$$\sqrt{n}\left(\hat{Q}_{\mathrm{DRO}}(\pi) - Q_{\mathrm{DRO}}(\pi)\right) \Rightarrow \mathcal{N}\left(0, \sigma^{2}(\alpha^{*})\right),$$

where α^* is the optimal dual variable, defined by

$$\alpha^* = \arg\max_{\alpha \geq 0} \left\{ -\alpha \log \mathbf{E}_{\mathbf{P}_0} \left[\exp(-Y(\pi(X))/\alpha) \right] - \alpha \delta \right\},$$

and

$$\sigma^{2}(\alpha) = \frac{\alpha^{2}}{\mathbf{E} \left[W_{i}(\pi, \alpha)\right]^{2}} \mathbf{E} \left[\frac{1}{\pi_{0} \left(\pi(X)|X\right)} \left(\exp\left(-Y(\pi(X))/\alpha\right)\right) - \mathbf{E} \left[\exp\left(-Y(\pi(X))/\alpha\right)\right]\right)^{2}\right].$$

• How to find a good policy:

$$\mathop{\arg\max}_{\pi\in\Pi} \inf_{\mathbf{P}\in\mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]?$$

How to find a good policy:

$$\underset{\pi \in \Pi}{\arg\max} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]?$$

Given a policy class Π, learn a distributionally robust policy:

$$\begin{array}{ll} \hat{\pi}_{\mathrm{DRO}} & = & \arg\max_{\pi \in \Pi} \hat{Q}_{\mathrm{DRO}}(\pi) \\ & = & \arg\max_{\pi \in \Pi} \sup_{\alpha > 0} \{-\alpha \log \hat{W}_{\mathrm{n}}(\pi, \alpha) - \alpha \delta\} \end{array}$$

How to find a good policy:

$$\underset{\pi \in \Pi}{\operatorname{arg\,max}} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]?$$

Given a policy class Π, learn a distributionally robust policy:

$$\begin{split} \hat{\pi}_{\mathrm{DRO}} &= & \arg\max_{\pi \in \Pi} \hat{Q}_{\mathrm{DRO}}(\pi) \\ &= & \arg\max_{\pi \in \Pi} \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_{\mathit{n}}(\pi, \alpha) - \alpha \delta\} \end{split}$$

• Alternatively update π and α ;

How to find a good policy:

$$\underset{\pi \in \Pi}{\arg\max} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]?$$

Given a policy class Π, learn a distributionally robust policy:

$$\begin{array}{ll} \hat{\pi}_{\mathrm{DRO}} & = & \arg\max_{\pi \in \Pi} \hat{Q}_{\mathrm{DRO}}(\pi) \\ & = & \arg\max_{\pi \in \Pi} \sup_{\alpha \geq 0} \{-\alpha \log \hat{W}_{n}(\pi, \alpha) - \alpha \delta\} \end{array}$$

- Alternatively update π and α ;
 - \bullet Using Newton-Raphson method to update $\alpha;$ converge fast empirically.

Statistical Performance Guarantee

Theorem

Under assumptions mentioned above, with probability at least $1-\varepsilon$, we have

$$\max_{\pi' \in \Pi} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_{0}}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi'(X))] - \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_{0}}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]$$

$$\leq \frac{4}{\underline{b}\eta\sqrt{n}} \left((\sqrt{2} + 1)\kappa^{(n)}(\Pi) + \sqrt{2\log\left(\frac{2}{\varepsilon}\right)} + C \right),$$

where $\kappa^{(n)}(\Pi)$ is the entropy integral defined via the Hammer distance in Π , $\eta > 0$ is a lower bound for the propensity score (collection policy) $\pi_0(a,x)$, and C is a universal constant.

Statistical Performance Guarantee

Theorem

Under assumptions mentioned above, with probability at least $1-\varepsilon$, we have

$$\begin{split} & \max_{\pi' \in \Pi} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi'(X))] - \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))] \\ \leq & \frac{4}{\underline{b}\eta\sqrt{n}} \left((\sqrt{2} + 1)\kappa^{(n)}(\Pi) + \sqrt{2\log\left(\frac{2}{\varepsilon}\right)} + C \right), \end{split}$$

where $\kappa^{(n)}(\Pi)$ is the entropy integral defined via the Hammer distance in Π , $\eta > 0$ is a lower bound for the propensity score (collection policy) $\pi_0(a,x)$, and C is a universal constant.

Simulation Study: Benchmark

Benchmark: let $\overline{\Pi}$ denotes the class of all measurable mappings from contexts \mathcal{X} to the action set \mathcal{A} .

• Bayes policy $\bar{\pi}^*$:

$$ar{\pi}^* \in rg \max_{\pi \in \overline{\Pi}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))], \text{ and}$$

• Bayes DRO policy $\bar{\pi}^*_{\mathrm{DRO}}$:

$$\overline{\pi}^*_{\mathrm{DRO}} \in \operatorname*{arg\,max}_{\pi \in \overline{\Pi}} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))].$$

Simulation Study: Benchmark

Benchmark: let $\overline{\Pi}$ denotes the class of all measurable mappings from contexts $\mathcal X$ to the action set $\mathcal A$.

• Bayes policy $\bar{\pi}^*$:

$$ar{\pi}^* \in rg \max_{\pi \in \overline{\Pi}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))], \text{ and}$$

• Bayes DRO policy $\bar{\pi}^*_{\mathrm{DRO}}$:

$$\overline{\pi}^*_{\mathrm{DRO}} \in \operatorname*{arg\,max}_{\pi \in \overline{\Pi}} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_0(\delta)}} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))].$$

 Easy to compute, because the policies are the best response for each X.

Simulation Study: A Linear Example

 A linear example: 5-dimensional features, but only the first two matters:

$$Y(i)|X \sim \mathcal{N}(\beta_i^{\top}X, \sigma_i^2), \text{ for } i = 1, 2, 3.$$
 for $\beta_1 = (1, 0, 0, 0, 0), \beta_2 = (-1/2, \sqrt{3}/2, 0, 0, 0), \beta_3 = (-1/2, -\sqrt{3}/2, 0, 0, 0).$ and $\sigma_1 = 0.2, \sigma_2 = 0.5, \sigma_3 = 0.8.$

Simulation Study: A Linear Example

 A linear example: 5-dimensional features, but only the first two matters:

$$Y(i)|X \sim \mathcal{N}(\beta_i^{\top} X, \sigma_i^2), \text{ for } i = 1, 2, 3.$$
 for $\beta_1 = (1, 0, 0, 0, 0), \beta_2 = (-1/2, \sqrt{3}/2, 0, 0, 0), \beta_3 = (-1/2, -\sqrt{3}/2, 0, 0, 0).$ and $\sigma_1 = 0.2, \sigma_2 = 0.5, \sigma_3 = 0.8.$

• The linear policy class:

$$\Pi = \{ \pi(x) = \arg \max_{a \in \mathcal{A}} \ \{ \theta_a^{\top} x \} : \theta_a \in \mathbf{R}^p, a \in \mathcal{A} \}.$$

Simulation Study: A Linear Example

 A linear example: 5-dimensional features, but only the first two matters:

$$Y(i)|X \sim \mathcal{N}(\beta_i^{\top}X, \sigma_i^2), \text{ for } i = 1, 2, 3.$$
 for $\beta_1 = (1, 0, 0, 0, 0), \beta_2 = (-1/2, \sqrt{3}/2, 0, 0, 0), \beta_3 = (-1/2, -\sqrt{3}/2, 0, 0, 0).$ and $\sigma_1 = 0.2, \sigma_2 = 0.5, \sigma_3 = 0.8.$

• The linear policy class:

$$\Pi = \{ \pi(x) = \arg \max_{a \in \mathcal{A}} \ \{ \theta_a^\top x \} : \theta_a \in \mathbf{R}^p, a \in \mathcal{A} \}.$$

• Collection policy π_0 :

	Region 1	Region 2	Region 3
Action 1	0.50	0.25	0.25
Action 2	0.25	0.50	0.25
Action 3	0.25	0.25	0.50

Table 1: The probabilities of selecting an action based on π_0 in the linear example.

Linear Example

Figure 1: (a) Bayes policy $\bar{\pi}^*$; (b) non-DRO linear policy; (c) Bayes distributionally robust policy $\bar{\pi}^*_{DRO}$; (d) distributionally robust linear policy $\hat{\pi}_{DRO}$.

Non-linear Example with the Linear Policy Class

Figure 2: (a) Bayes policy $\bar{\pi}^*$; (b) non-DRO linear policy; (c) Bayes distributionally robust policy $\bar{\pi}^*_{DRO}$; (d) distributionally robust linear policy $\hat{\pi}_{DRO}$. $\sigma_1 = 0.8, \sigma_2 = 0.2, \sigma_3 = 0.4$.

Extension to *f*-divergence Uncertainty Set

For
$$f_k(t) \triangleq \frac{t^k - kt + k - 1}{k(k-1)}$$
, define f -divergence as

$$D_k(\mathbf{P}||\mathbf{P}_0) \triangleq \int f_k\left(\frac{d\mathbf{P}}{d\mathbf{P}_0}\right) d\mathbf{P}_0.$$

Extension to *f*-divergence Uncertainty Set

For $f_k(t) \triangleq \frac{t^k - kt + k - 1}{k(k-1)}$, define f-divergence as

$$D_k(\mathbf{P}||\mathbf{P}_0) \triangleq \int f_k\left(\frac{d\mathbf{P}}{d\mathbf{P}_0}\right) d\mathbf{P}_0.$$

Theorem

Under assumptions mentioned above, with probability at least $1-\varepsilon$, we have

$$\max_{\pi' \in \Pi} \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_{0}}^{k}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi'(X))] - \inf_{\mathbf{P} \in \mathcal{U}_{\mathbf{P}_{0}}^{k}(\delta)} \mathbf{E}_{\mathbf{P}}[Y(\pi(X))]$$

$$\leq \frac{4c_{k}(\delta)}{\underline{b}\eta\sqrt{n}} \left((\sqrt{2} + 1)\kappa^{(n)}(\Pi) + \sqrt{2\log\left(\frac{2}{\varepsilon}\right)} + C \right),$$

where $c_k(\delta) \triangleq (1 + k(k-1)\delta)^{1/k}$.

Reference

Si, Nian, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. "Distributional Robust Batch Contextual Bandits." arXiv preprint arXiv:2006.05630 (2020).

The short version has been accepted in ICML 2020.

Thanks!